

GL/-SS///7E

PLANUNGSHANDBUCH

BALARDO core / core hd / hybrid / smart GLASGELÄNDERSYSTEME

GL/-SS///7*E*

BALARDO

INHALT

4 Das System

- 4 Übersicht Anwendungsbeispiele
- 6 Übersicht Systemprofile
- 8 Anwendung (Übersicht Holmlasten)
- 12 Ihr Weg zum optimalen BALARDO Glasgeländer

15 Systemanwendungen

- 16 Systemanwendung Ebene
- 17 Systemanwendung Treppe

19 Systemprofile

- 20 BALARDO core
- 22 BALARDO core Top 1
- 24 BALARDO core Top 2
- 26 BALARDO core Top 3
- 28 BALARDO core Top 4
- 30 BALARDO core Side 1
- 32 BALARDO core Side 2

34 BALARDO core hd

- 36 BALARDO core hd Top 1
- 38 BALARDO core hd Top 2
- 40 BALARDO core hd Side 1

42 BALARDO hybrid

- 44 BALARDO hybrid Top 1
- 46 BALARDO hybrid Top 4
- 48 BALARDO hybrid Side 1

50 BALARDO smart

- 52 BALARDO smart Top 1
- 54 BALARDO smart Side 3
- 56 Weitere BALARDO-Systeme

58 Einsatz- und Bemessungstabellen Tragprofile

60 Glas

- 60 Freiräume für Ihre Gestaltung
- 62 Glasaufbau / Anwendung

64 Einsatz- und Bemessungstabellen Glas

70 Handläufe

- 71 Handlauf-Montage
- 72 BALARDO firstglass Glaskantenschutz
- 74 Lastverteilende Edelstahl-Handläufe
- 75 Glaskantenschutzprofile
- 76 Holz-Handläufe

77 Zusätzlicher konstruktiver Handlauf

- 80 Glasfalzentwässerung
- 81 Balkon-/Terrassenentwässerung
- 82 Zubehör
- 84 Anschlussprofile
- 86 Baukörperverkleidung
- 88 Verbindungselemente

90 Anwendungsbeispiele

- 92 Anwendungsbeispiele Outside / Außenbereich
- 110 Anwendungsbeispiele Inside / Innenbereich

119 Dimensionierung der Anbindung

- 120 BALARDO core
- 126 BALARDO core hd
- 129 BALARDO hybrid
- 132 BALARDO smart

135 FIX'N SLIDE outside

Das System mit thermischer Trennung zur sicheren Befestigung von Anbauelementen an Gebäudehüllen

138 Montageanleitungen

- 138 Montageanleitung CLICKN FIX für BALARDO core
- 140 Montageanleitung CLEVERFIX für BALARDO hybrid
- 142 Montageanleitung EASYFIX für BALARDO smart

144 Produktanfragen

- 144 Produktanfrage BALARDO core
- 145 Produktanfrage BALARDO core hd
- 146 Produktanfrage BALARDO hybrid
- 147 Produktanfrage BALARDO smart
- 148 Produktanfrage FIX*SLIDE

GLASSKLARE KANTE ZEIGEN BALARDO MIT GEPRÜFTER SICHERHEIT

BALARDO ist die Nr. 1 der Glasgeländer und gilt oft als Synonym für Glasgeländer.

Aus den stetig wachsenden Bedürfnissen des Marktes heraus wurde die BALARDO-Familie erweitert:

BALARDO core (vorher BALARDO alu)

Die Nummer 1 für die fixe Montage

BALARDO core hd (vorher BALARDO alu hd)

Das sichere System für schwere Lasten

BALARDO hybrid

Das starke System mit stufenloser Verstellbarkeit

BALARDO smart

Das minimalistische System für den privaten Bereich

BALARDO aqua control

Das System zur kontrollierten Balkonentwässerung

Zusammen mit dem innovativen Glaskantenschutz BALARDO *firstglass* setzt GLASSLINE in der Glasarchitektur wegweisende Akzente. BALARDO *steel* und BALARDO *wave* vervollständigen die BALARDO Familie.

BALARDO - geprüfte Sicherheit inklusive

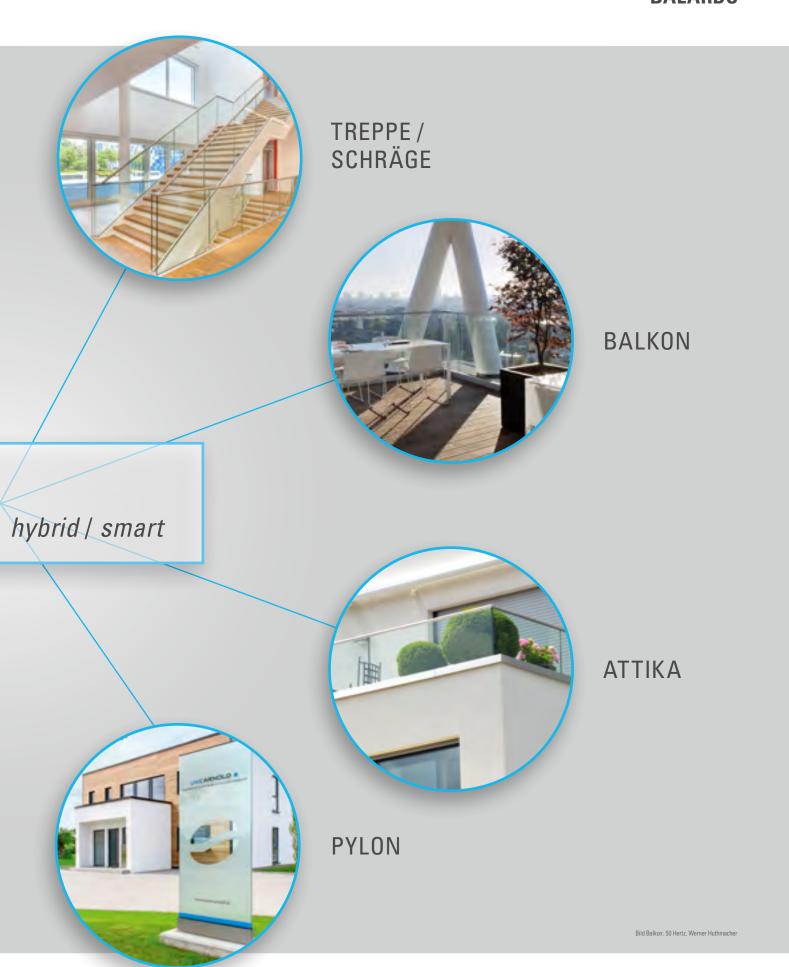
Mit Allgemeinem bauaufsichtlichem Prüfzeugnis (AbP)

Mit geprüfter Typenstatik

LGA geprüfte Sicherheit

Einsatz auch in Sportstätten. Ballwurfsicher.

DIN 18008-4 geprüft



GL/-SS///7*E*

BALARDO

GL/-SS///7E BALARDO

ÜBERSICHT

SYSTEMPROFILE

BALARDO core

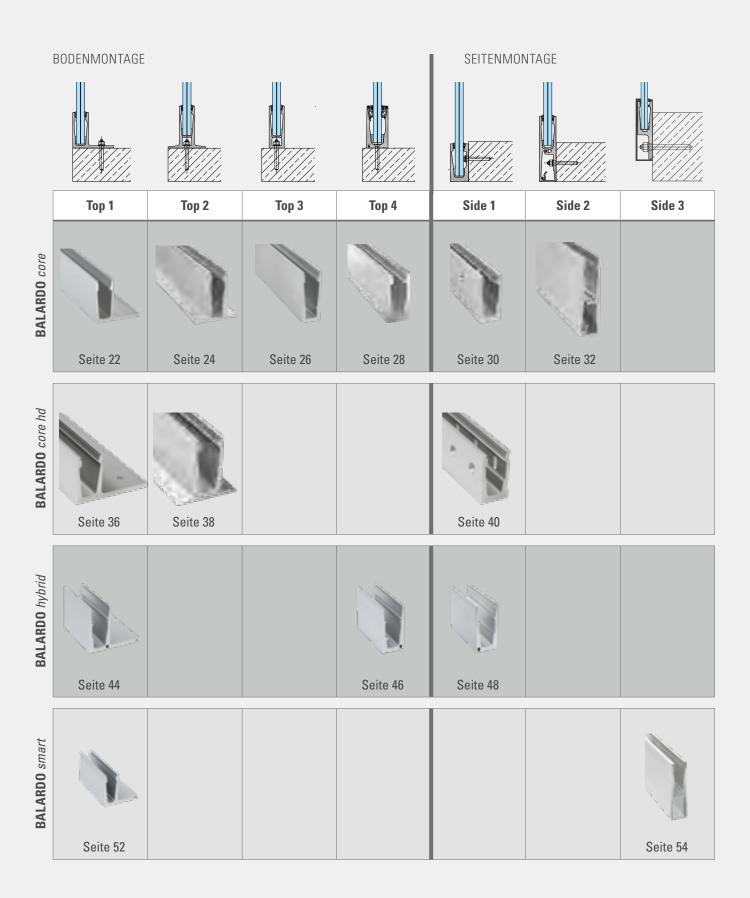
DIE NUMMER 1 FÜR DIE FIXE MONTAGE

BALARDO core hd

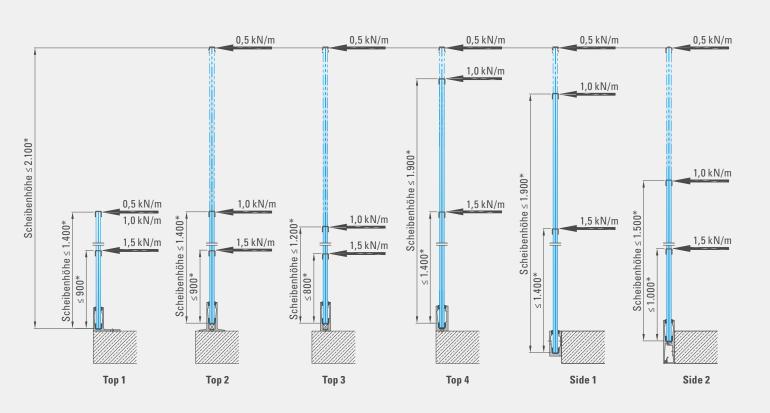
DAS SICHERE SYSTEM FÜR SCHWERE LASTEN

BALARDO hybrid

DAS STARKE SYSTEM MIT STUFENLOSER VERSTELLBARKEIT


BALARDO smart

DAS MINIMALISTISCHE SYSTEM FÜR DEN PRIVATEN BEREICH


GL/-SS///7E BALARDO

BALARDO core (vormals **BALARDO** alu)

DIE NUMMER 1 FÜR DIE FIXE MONTAGE

Glas: VSG 2 x 6 mm, 2 x 8 mm und 2 x 10 mm

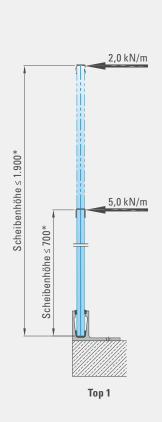
Holmlast bis 1,5 kN/m

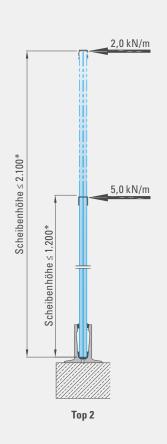
- Private und öffentliche Bauvorhaben
- Innen- und Außenbereich

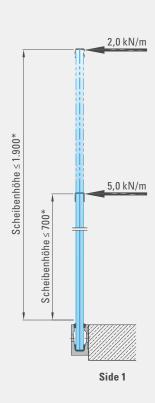
Montageprinzip CLICK*N FIX

- 3 Anbindung oben / seitlich
- 4 Ebene / Treppe

Weitere Produktinformationen finden Sie ab Seite 20.




^{*} Scheibenhöhen siehe Einsatz- und Bemessungstabellen Tragprofile Seite 58, Glas ab Seite 64



BALARDO core hd (vormals BALARDO alu hd)

DAS SICHERE SYSTEM FÜR SCHWERE LASTEN

Glas: VSG 2 x 12 mm und 2 x 15 mm

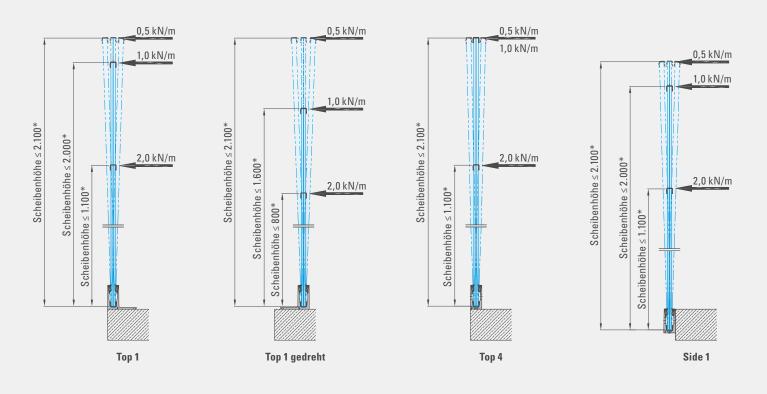
Holmlast bis 5,0 kN/m

- Öffentliche Bauvorhaben
- Innen- und Außenbereich

Montageprinzip CLICK*N FIX

- 3 Anbindung oben / seitlich
- 4 Ebene / Treppe

Weitere Produktinformationen finden Sie ab Seite 34.



^{*} Scheibenhöhen siehe Einsatz- und Bemessungstabellen Tragprofile Seite 58, Glas ab Seite 64

BALARDO hybrid

DAS STARKE SYSTEM MIT STUFENLOSER VERSTELLBARKEIT

Glas: VSG 2 x 8 mm und 2 x 10 mm

Holmlast bis 2,0 kN/m

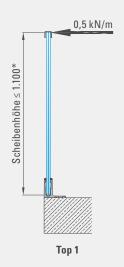
- 1 Private und öffentliche Bauvorhaben
- 2 Innen- und Außenbereich

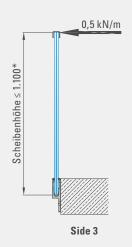
Montageprinzip CLEVERFIX

- 3 Anbindung oben / seitlich
- 4 Ebene / Treppe

✓ BALARDO aqua control

Weitere Produktinformationen finden Sie ab Seite 42.


* Scheibenhöhen siehe Einsatz- und Bemessungstabellen Tragprofile Seite 58, Glas ab Seite 64



BALARDO smart

DAS MINIMALISTISCHE SYSTEM FÜR DEN PRIVATEN BEREICH

Glas: VSG 2 x 6 mm und 2 x 8 mm

Holmlast bis 0,5 kN/m

- Private Bauvorhaben
- 2 Innenbereich

Montageprinzip EASYFIX

- 3 Anbindung oben / seitlich
- 4 Ebene / Treppe

BALARDO firstglass

Weitere Produktinformationen finden Sie ab Seite 50.

^{*} Scheibenhöhen siehe Einsatz- und Bemessungstabellen Glas ab Seite 64

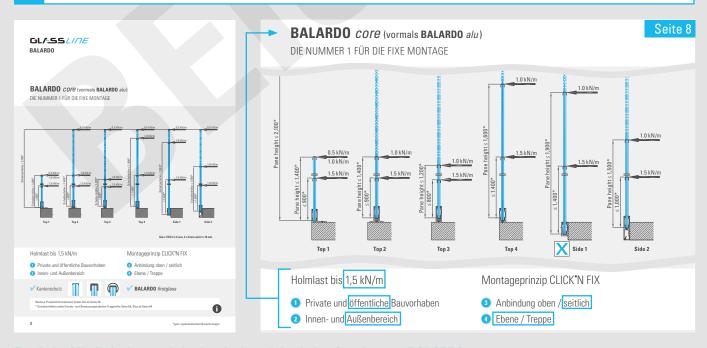
IHR WEG ZUM OPTIMALEN BALARDO GLASGELÄNDER

Kriterien zur Auswahl von Systemprofil, Glas und Handlauf

1,4 kN/m²

Wie Sie das für Ihre Anwendung passende BALARDO Glasgeländer in wenigen Schritten ermitteln, zeigt das nachfolgende Beispiel.

IHRE DATEN UND ANFORDERUNGEN ANWENDUNG VERWENDUNG Holmlast Ebene Privater Bereich $0.5 \, \text{kN/m}$ Treppe Öffentlicher Bereich 1,0 kN/m **GLASHÖHE** Erhöhte Holmlasten **1.200** mm z.B. Sportstätten, Fluchtwege > 2.0 kN/mScheibenhöhe **ANWENDUNGSBEREICH ANBINDUNG** Windlast Von oben


Seitlich

Vorgehensweise auf Basis Ihrer Daten:

1 PROFILWAHL Seiten 8 – 11

Innenanwendung

Außenanwendung

Ergebnis: Alle Anforderungskriterien decken sich mit den Angaben von BALARDO core.

2 DIMENSIONIERUNG DES SYSTEMPROFILS Seiten 58-59 (Auszug aus der Tabelle)

Vorgegebene Windlast 1,40 kN/m², vorgegebene Scheibenhöhe 1.200 mm, vorgegebene Holmlast 1,0 kN/m

TRAGPROFIL BALARDO core

Seite 58

Holmlast [kN/m]	BALARDO core		max. Glashöhe [mm] bei zul. Windlast [kN/m²]														
		600	700	800	900	1.000	1.100	1.200	1.300	1.400	1.500	1.600	1.700	1.800	1.900	2.000	2.100
	Tup 1	2,00	1,36	1,40	1.02	0,70	0,49	0.30	0,10	0,05							
	Top 2	5,88	4,03	2,87	2.09	1.56	1.04	0.64	0,35	0,13							
	Top 3	4,74	3,19	2,23	1,53	0,91	0,47	0,17									
1,0	Top 4	6,59	4,56	3,27	2,41	1,81	1,38	0,94	0,61	0,35	0,16	0,01					
	Side 1	9,43	6,64	4,87	3,67	2,84	2,23	1,77	1,43	1,16	0,92	0,67	0,48	0,33	0,20		
	Side 2	6,28	4,33	3,10	2,27	1,70	1,24	0,81	0,50	0,26	0,08						

Ergebnis: zulässige Windlast 1,77 kN/m² ≥ 1,40 kN/m². Passendes Profil Side 1.

DIMENSIONIERUNG DES GLASES Seiten 64-69 (Auszug aus der Tabelle)

Anwendung Ebene

Vorgegebene Windlast 1,40 kN/m², vorgegebene Scheibenhöhe 1.200 mm, vorgegebene Holmlast 1,0 kN/m

Seite 64

Holmlast [kN/m]	Glas VSG-ESG [mm]		max. Glashöhe [mm] bei zul. Windlast [kN/m²]						
			1.100	1.200	1.300	1.400	1.500	1.6	
	2x6	SGP	2,15						
	2x8	PVB	1,01	0,56	0,24	0,00			
		SGP	2,40	1,92	A 55	1,27	1,04	0,	
1.0	2x10 2x12	PVB	2,40	1,92	B 55	1,27	1,04	0,	
1,0		SGP	2,40	1,92	1,55	1,27	1,04	0,	
		PVB	4,12	3,20	2,52	2,00	1,57	1,	
		SGP	9,15	7,60	6,39	5,44	4,67	4,	

Ergebnisse:

- A VSG-ESG 2x8 SGP mit lastverteilendem Handlauf und Handlaufanbindung am Baukörper
- B VSG-ESG 2x10 PVB ohne lastverteilenden Handlauf. Glaskantenschutz

Anwendung Treppe

Vorgegebene Windlast 1,40 kN/m², vorgegebene Scheibenhöhe 1.200 mm, vorgegebene Holmlast 1,0 kN/m

Seite 66

Holmlast [kN/m]	Glas VSG-ESG [mm]		max. Glashöhe [mm] bei zul. Windlast [kN/m²]					
			1.000	1.100	1.200	1.300	1	
	20	PVB						
	2x8	SGP	3,04	2,40	1,92	A 1,55	1	
	2x10	PVB	2,54	1,92	1,48	B 1,07	(
1.0		SGP	3,04	2,40	1,92	C 1,55	1	
1,0	2x12	PVB	3,04	2,40	1,92	1,55	,	
		SGP	3,04	2,40	1,92	1,55		
	2x15	PVB	3,04	2,40	1,92	1,55		
	ZXIO	SGP	3,04	2,40	1,92	1,55	,	

Ergebnisse

- A VSG-ESG 2x8 SGP mit lastverteilendem Handlauf und Handlaufanbindung am Baukörper
- B VSG-ESG 2x10 PVB mit lastverteilendem Handlauf und Handlaufanbindung am Baukörper
- VSG-ESG 2x10 SGP ohne lastverteilenden Handlauf. Glaskantenschutz
- Ohne lastabtragende Handlaufanbindung möglich. Anstelle eines Handlaufs kann auch ein Glaskantenschutz verwendet werden. Max. Glasbreite: 6.000 mm.
- Lastverteilender Handlauf und Handlaufanbindung am Baukörper (tragende Bauteile) bei den Auslaufelementen erforderlich.

 Das Breitenverhältnis der benachbarten Glasscheiben beträgt min. 1:4 und max. 4:1. Max. Glasbreite 3.000 mm, siehe Seite 75.
- XX,XX Abweichendes Breitenverhältnis der benachbarten Glasscheiben: Min. 1:2 und max. 2:1.

A

FREIRAUM FÜR KOMMUNIKATION

DAS NEUE BÜROGEBÄUDE DER BHS IN WEIHERHAMMER

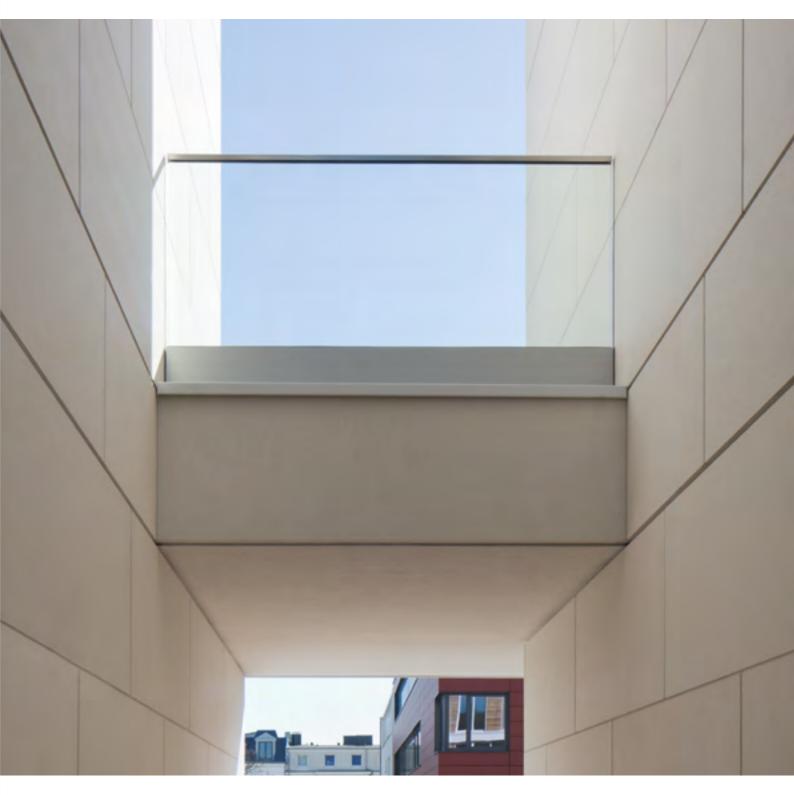
Rund 800 m Glasgeländer haben die Architekten der furoris Gruppe aus Chemnitz im neuen Bürogebäude der BHS in Weiherhammer verbaut. Ein Ort, an dem sich die Mitarbeitenden wohl fühlen, der sie miteinander verbindet – ein Ort der Transparenz und der Kommunikation.

"Wir wollen das Gebäude an unsere Mitarbeiter und deren Aufgabenbereiche anpassen. Bisher war das umgekehrt", erzählt BHS Chef Christian Engel. "Die Arbeitsplätze sind nicht mehr statisch. Wenn ein Mitarbeiter möchte, kann er seinen Schreibtisch auch auf den Balkon stellen." Deshalb waren Glasgeländer mit ihrer Transparenz und Eleganz die nahe liegende Wahl. Durch sie sind die großzügig geschwungenen Terrassen mit ihren gläsernen Brüstungen echte Orte zum Erholen. 800 laufende Meter des Glasgeländersystems

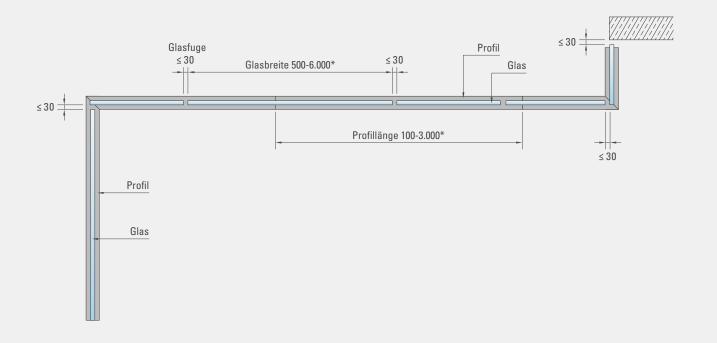
BALARDO *core* von GLASSLINE wurden an der Betondecke befestigt und gewähren den Mitarbeitern nun nicht nur einen freien, sondern auch sicheren Blick in die Natur.

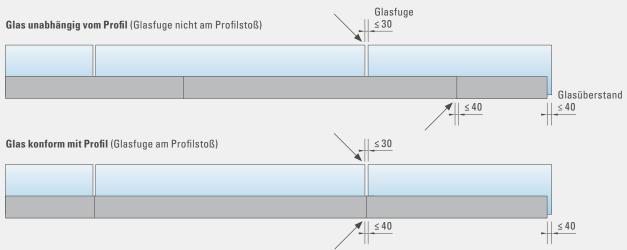
Die Glasgeländer bestehen aus Aluminium Tragprofilen, einem Verbundsicherheitsglas 20 Millimeter aus 2 x 10 Millimeter ESG mit 1,52 Millimeter Folie und einem lastabtragenden Kantenschutz. Sebastian Sinn, Vertriebsleiter bei der GLASSLINE GmbH in Adelsheim freut sich über den sehr besonderen Bau der Architekten von der furoris Gruppe. "Wir haben genau für solche Ideen unser Glasgeländersystem

als ein filigranes Leichtbausystem entwickelt. Seine designorientierte Transparenz und die Funktionalität überzeugen unsere Kunden in jeder Hinsicht."



SYSTEMANWENDUNGEN

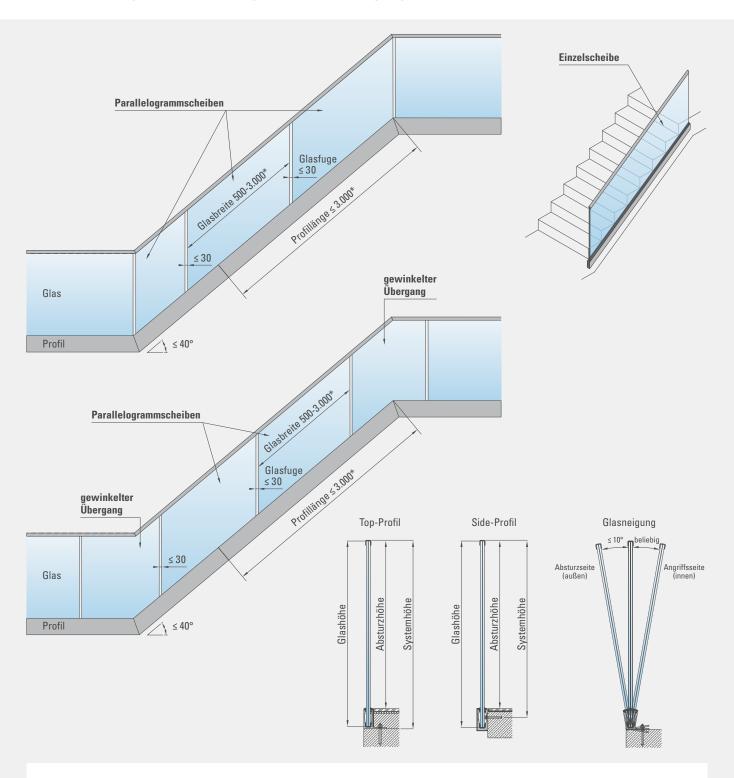

EBENE UND TREPPE



Systemanwendungen Ebene

Glas und Profil

Flexible Montage der Glasplatten


^{*} Einsatz- und Bemessungstabellen Glas siehe ab Seite 64, Tragprofile siehe Seite 58, Profilabstand ≤ 40 mm.

Offene, zugängliche Glaskanten sind konstruktiv zu schützen, z.B. mit dem Glaskantenschutzprofil vertikal Seite 75.

Systemanwendungen Treppe

Glas (Parallelogrammscheiben, gewinkelter Übergang, Einzelscheiben) und Profil

^{*} Glas-/Modellscheiben siehe Seite 63, Einsatz- und Bemessungstabellen Glas siehe ab Seite 64, Tragprofile siehe Seite 58, Profilabstand ≤ 40 mm. Offene, zugängliche Glaskanten sind konstruktiv zu schützen, z.B. mit dem Glaskantenschutzprofil vertikal Seite 75.

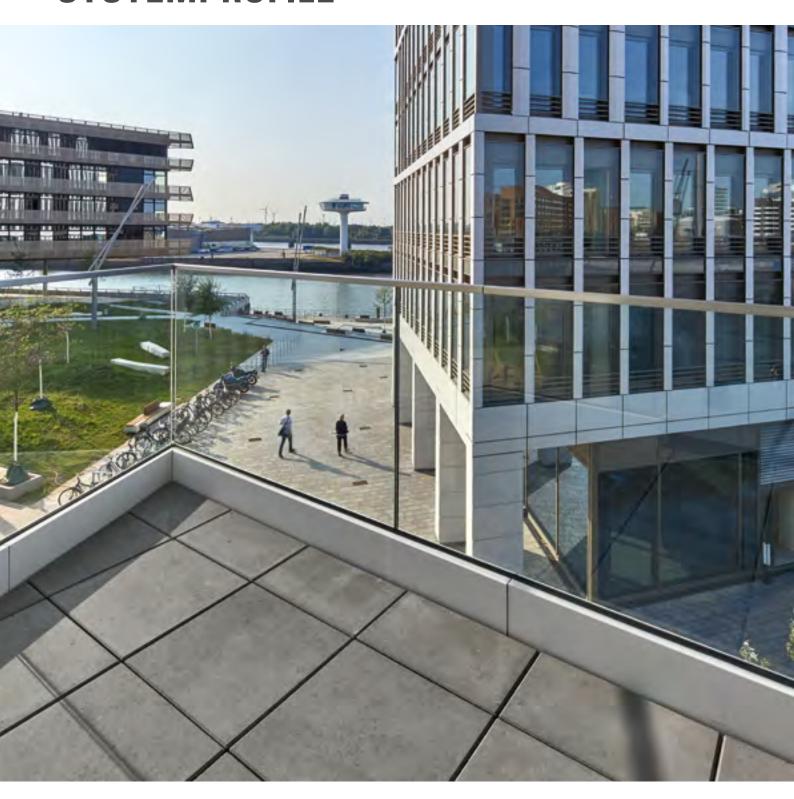
MIT WOW-EFFEKT:

DIE WANDVITRINE IM SENCKENBERG MUSEUM

Raumhohe Verglasungen müssen unbedingt stabil verankert werden. Das Frankfurter Senckenberg Museum gibt auf einer sicheren Basis faszinierende Einblicke in seine Objektwelt. Dinosaurier-Skelette mit Kultstatus und die weltweit artenreichste Vogel-Schausammlung – nicht von ungefähr ist das Frankfurter Naturmuseum ein Anziehungspunkt für Jung und Alt. Sein Träger, die Senckenberg Gesellschaft für Naturforschung (SNG), betreibt sieben Forschungsinstitute und drei Naturkundemuseen. Stolze 40 Millionen Objekte umfassen ihre Sammlungen. Anlässlich des 200-jährigen Jubiläums der SNG wurde der Öffentlichkeit 2017 eine weitere Attraktion vorgestellt: die Sonderausstellung "Faszination Vielfalt", die in einer riesigen Wandvitrine von 15 Metern Länge und vier Metern Höhe präsentiert wird.

Besondere Anforderungen an Statik und Stabilität mussten erfüllt werden, um den atemberaubenden Schaukasten zu bauen.

"Gefragt war eine hohe Konstruktion mit einfacher Montage, die zudem flexibel sein musste", erinnert sich Dirk Gattschau, Glasbauer aus Mülheim am Main. Denn Leihobjekte müssen wieder zurückgegeben, andere Schaustücke vielleicht ausgetauscht werden. Mit dem Steckprofilsystem BALARDO glasswall fand er hier die optimale Lösung: "Man kann die Vitrine relativ einfach ausglasen, Objekte entnehmen oder Reinigungsarbeiten durchführen und das Ganze wieder sauber verschließen." Übrigens: Allgemeines bauaufsichtliches Prüfzeugnis (AbP), geprüfte Typenstatik und LGA-Sicherheit unterstützen optimal bei der Nachweispflicht, eine Zustimmung im Einzelfall ist nicht erforderlich.

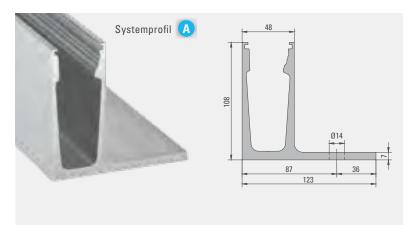


SYSTEMPROFILE

BALARDO core (vormals BALARDO alu)

DIE NUMMER 1 FÜR DIE FIXE MONTAGE

DIE VORTEILE


- Mit Allgemeinem bauaufsichtlichem Prüfzeugnis (AbP)
- Mit geprüfter Typenstatik
- ✓ Holmlasten bis 1,5 kN/m
- Einsatz auch in Sportstätten, geprüfte Ballwurfsicherheit
- ✓ LGA-geprüfte Sicherheit
- ✓ Scheibenbreiten bis 6.000 mm, Scheibenhöhen bis 2.100 mm
- ✓ Glas: VSG 2 x 6 mm, 2 x 8 mm und 2 x 10 mm mit PVB oder SGP 1,52 mm
- ✓ Für private und öffentliche Bauvorhaben
- ✓ Für den Innen- und Außenbereich
- ✓ Für Ebenen und Treppen
- ✓ BALARDO firstglass Glaskantenschutz anwendbar

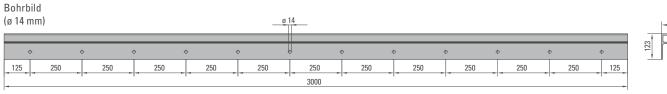
DAS CLICK'N FIX MONTAGESET

Systemprofil Top 1

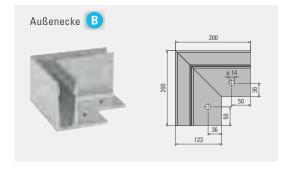
Aluminium (EN AW-6063 T66) Material:

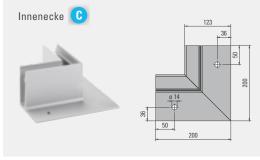
Lieferlänge: 3.000 mm Glaseinstand: ca. 95 mm

Glas: VSG 2 x 6 mm, 2 x 8 mm, 2 x 10 mm

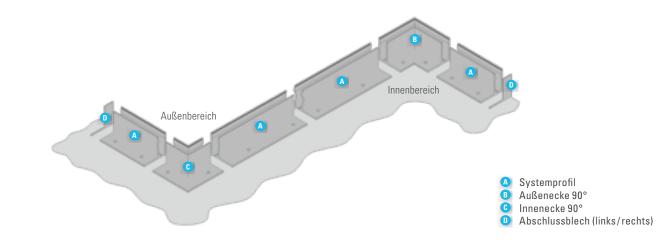

PVB/SGP: 1,52 mm

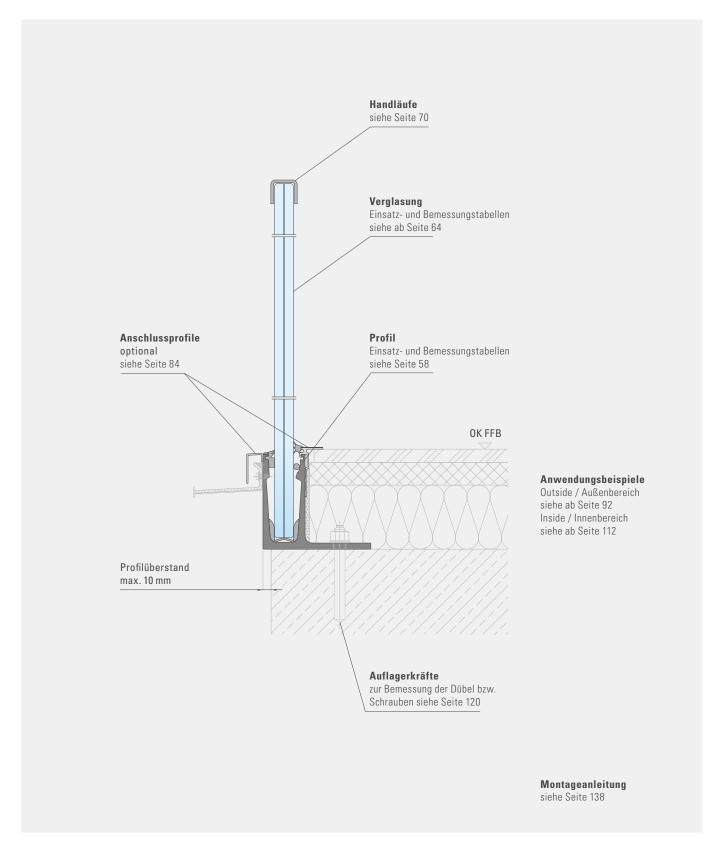
Oberflächen:

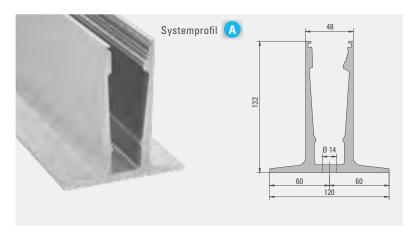




Befestigungsabstand	
privater Bereich 0,5 kN/m	öffentlicher Bereich 1,0 kN/m
a = 500 mm	a = 250 mm







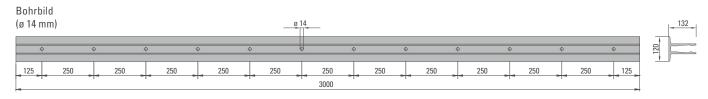
Systemnavigation Top 1

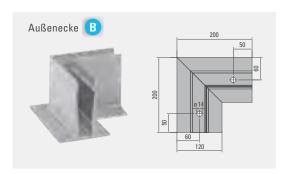
Systemprofil Top 2

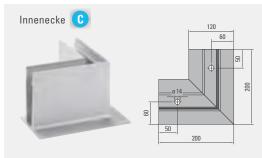
Material: Aluminium (EN AW-6063 T66)

Lieferlänge: 3.000 mm Glaseinstand: ca. 95 mm

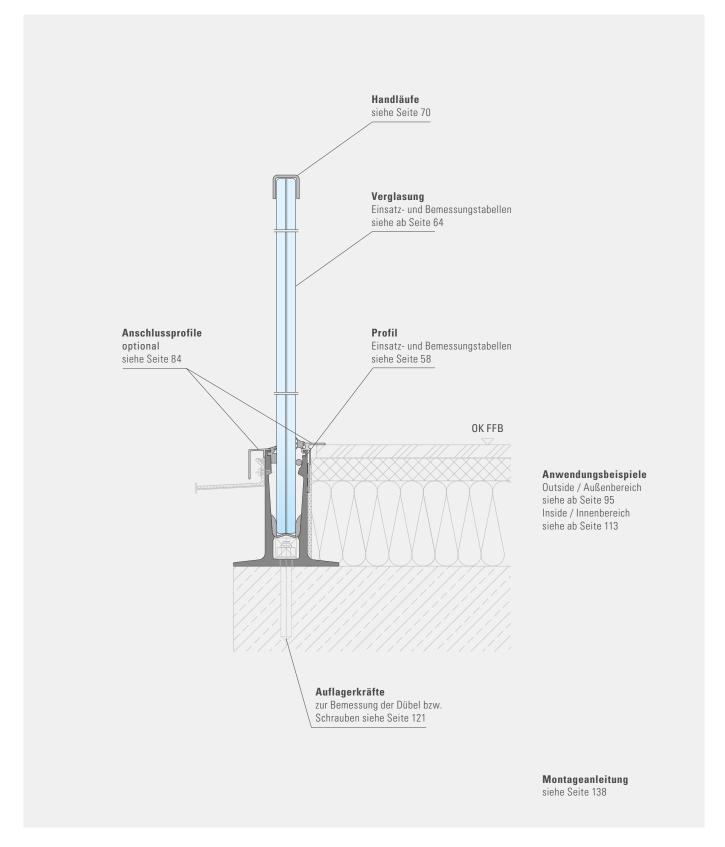
Glas: VSG 2 x 6 mm, 2 x 8 mm, 2 x 10 mm

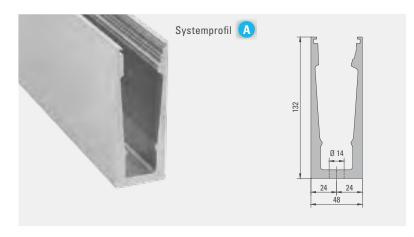

PVB / SGP: 1,52 mm


Oberflächen:



Befestigungsabstand					
privater Bereich 0,5 kN/m	öffentlicher Bereich 1,0 kN/m				
a = 500 mm	a = 250 mm				





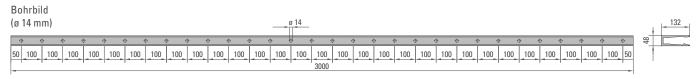
Systemnavigation Top 2

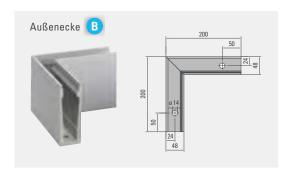
Systemprofil Top 3

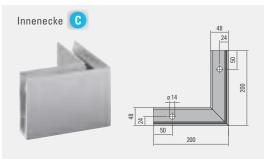
Material: Aluminium (EN AW-6063 T66)

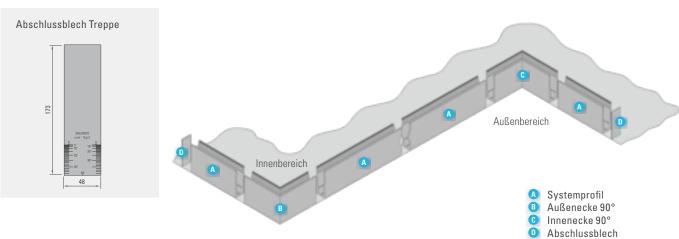
Lieferlänge: 3.000 mm Glaseinstand: ca. 95 mm

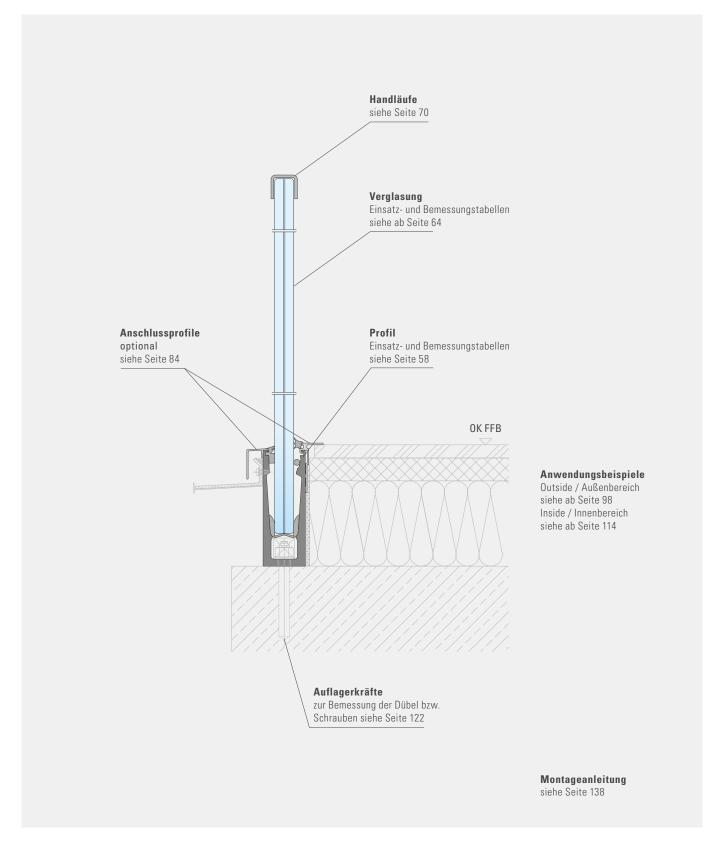
Glas: VSG 2 x 6 mm, 2 x 8 mm, 2 x 10 mm


PVB / SGP: 1,52 mm

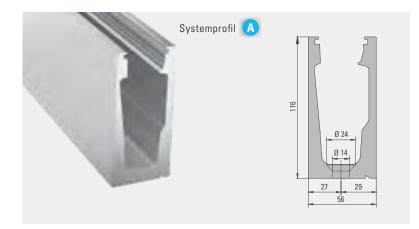

Oberflächen:




Befestigungsabstand	
privater Bereich 0,5 kN/m	öffentlicher Bereich 1,0 kN/m
a = 200 mm	a = 100 mm



Alle unsere Profile verfügen über das Allgemeine bauaufsichtliche Prüfzeugnis, geprüfte Typenstatik und sind LGA geprüft.



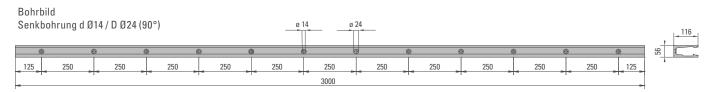
Systemnavigation Top 3

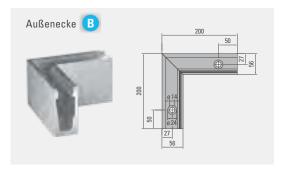
Systemprofil Top 4

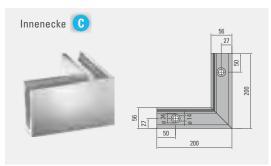
Material: Aluminium (EN AW-6063 T66)

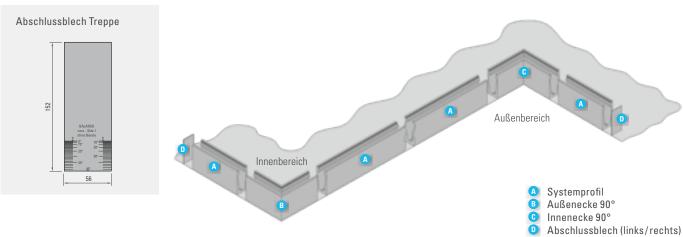
Lieferlänge: 3.000 mm Glaseinstand: ca. 100 mm

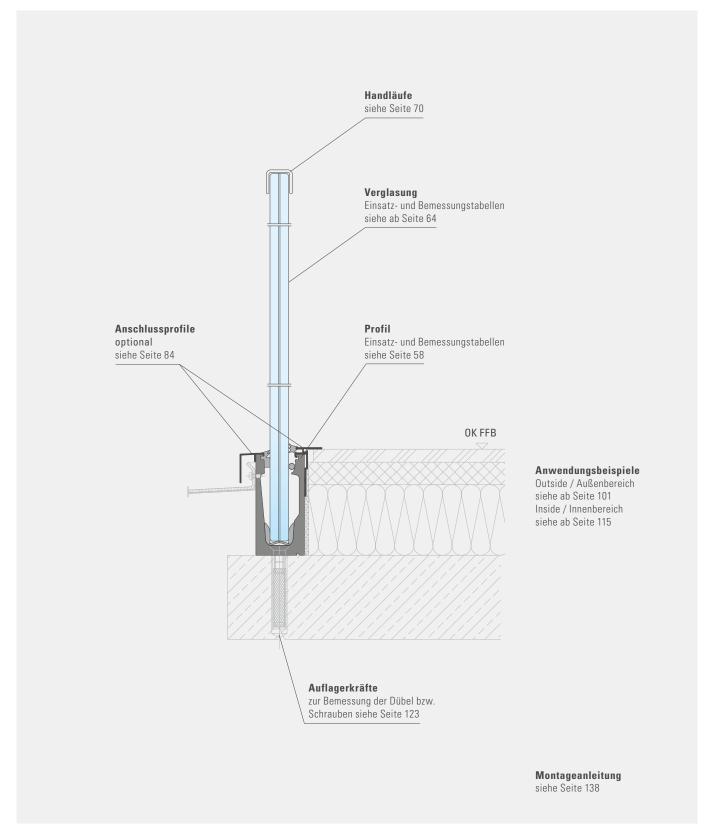
Glas: VSG 2 x 6 mm, 2 x 8 mm, 2 x 10 mm

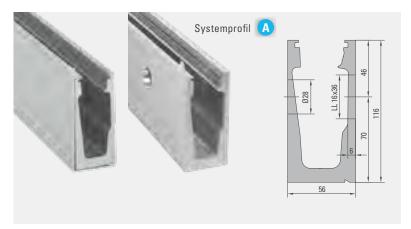

PVB / SGP: 1,52 mm


Oberflächen:




Befestigungsabstand					
privater Bereich 0,5 kN/m	öffentlicher Bereich 1,0 kN/m				
a = 500 mm	a = 250 mm				





Systemnavigation Top 4

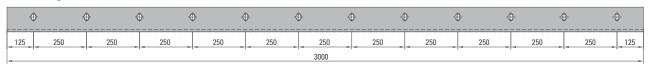
Systemprofil Side 1

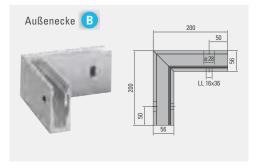
Material: Aluminium (EN AW-6063 T66)

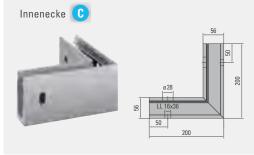
Lieferlänge: 3.000 mm Glaseinstand: ca. 100 mm

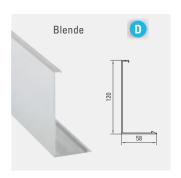
Glas: VSG 2 x 6 mm, 2 x 8 mm, 2 x 10 mm

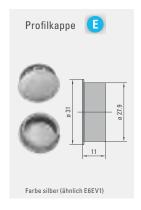
PVB / SGP: 1,52 mm

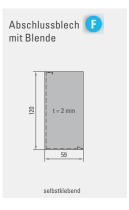

Oberflächen:

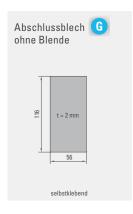



Befestigungsabstand	
privater Bereich 0,5 kN/m	öffentlicher Bereich 1,0 kN/m
a = 500 mm	a = 250 mm

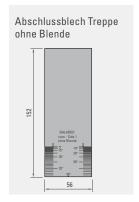

Bohrbild (hinten Langloch 16 x 36 mm, vorne Ø 28 mm)

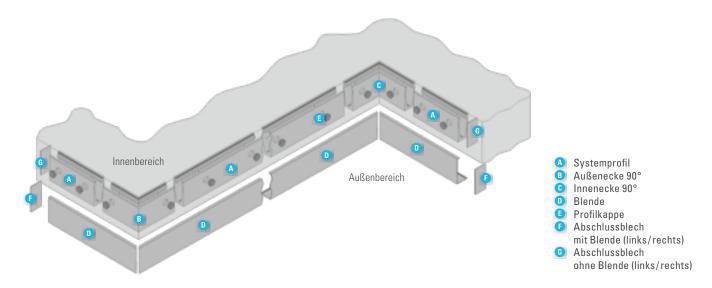


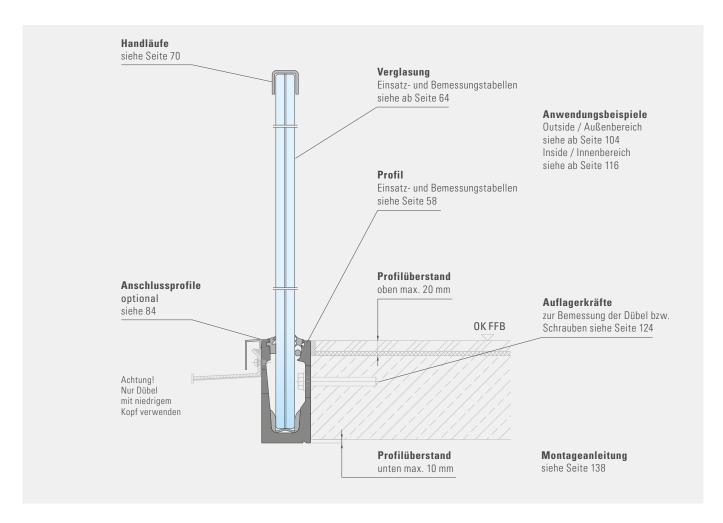




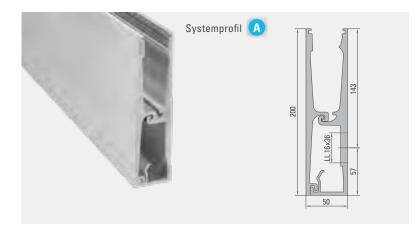








Systemprofil Side 1



Systemnavigation Side 1

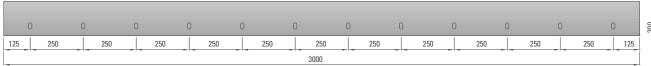
Systemprofil Side 2

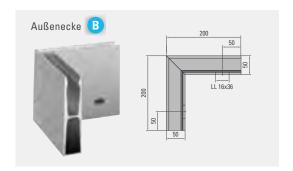
Material: Aluminium (EN AW-6063 T66)

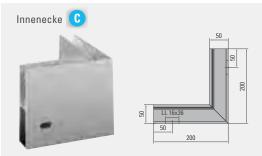
Lieferlänge: 3.000 mm Glaseinstand: ca. 95 mm

Glas: VSG 2 x 6 mm, 2 x 8 mm, 2 x 10 mm

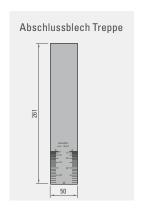
PVB / SGP: 1,52 mm

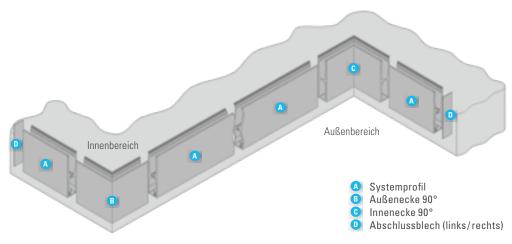

Oberflächen:

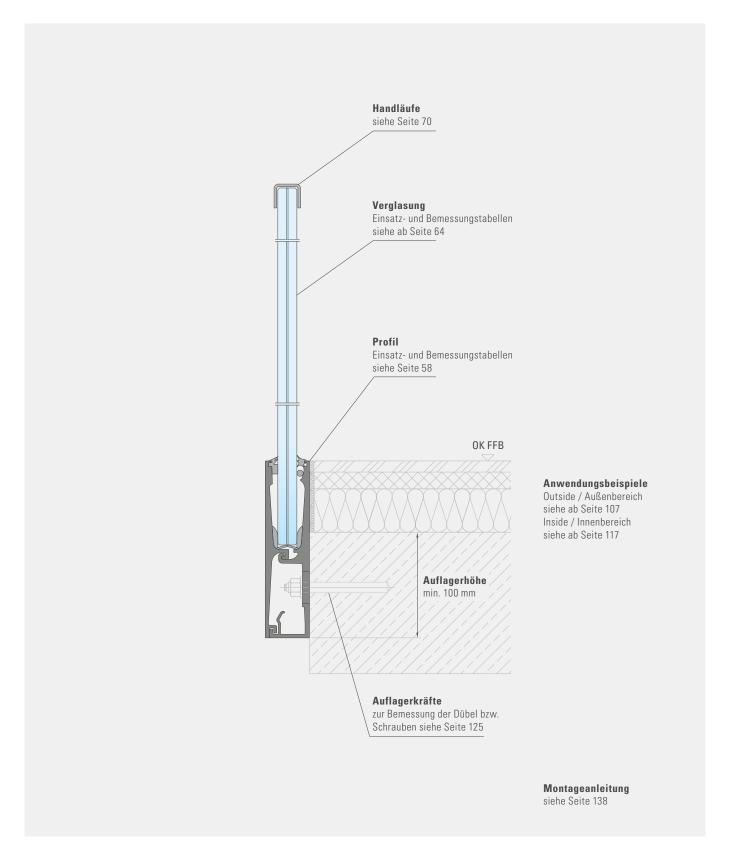



Befestigungsabstand	
privater Bereich 0,5 kN/m	öffentlicher Bereich 1,0 kN/m
a = 500 mm	a = 250 mm

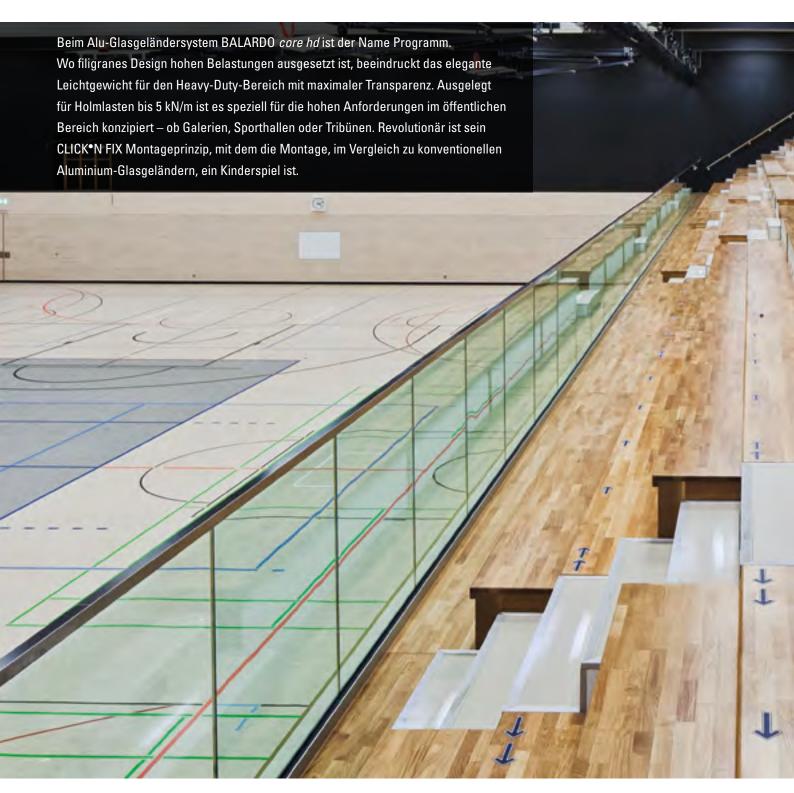
Bohrbild (Langloch 16 x 36 mm)







Alle unsere Profile verfügen über das Allgemeine bauaufsichtliche Prüfzeugnis, geprüfte Typenstatik und sind LGA geprüft.

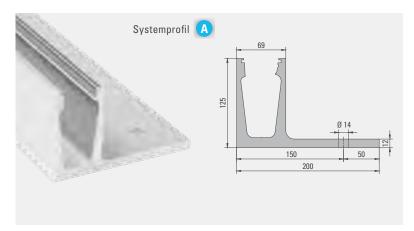

Systemnavigation Side 2

BALARDO core hd (vormals BALARDO alu hd)

DAS SICHERE SYSTEM FÜR SCHWERE LASTEN

DIE VORTEILE

- Mit Allgemeinem bauaufsichtlichem Prüfzeugnis (AbP)
- Mit geprüfter Typenstatik
- ✓ Holmlasten bis 5 kN/m
- Einsatz auch in Sportstätten, geprüfte Ballwurfsicherheit
- ✓ LGA-geprüfte Sicherheit
- ✓ Scheibenbreiten bis 6.000 mm, Scheibenhöhen bis 2.100 mm
- ✓ Glas: VSG 2 x 12 mm und 2 x 15 mm mit PVB oder SGP 1,52 mm
- ✓ Für öffentliche Bauvorhaben
- ✓ Für den Innen- und Außenbereich
- ✓ Für Ebenen und Treppen


DAS CLICK'N FIX MONTAGESET

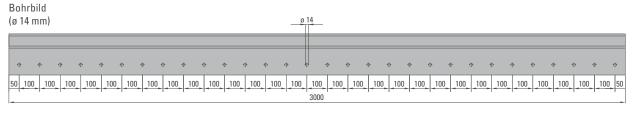
BALARDO core hd

Systemprofil Top 1

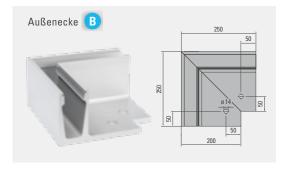
Material: Aluminium (EN AW-6063 T66)

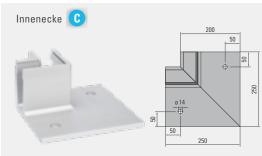
Lieferlänge: 3.000 mm Glaseinstand: ca. 105 mm

Glas: VSG 2 x 12 mm, 2 x 15 mm

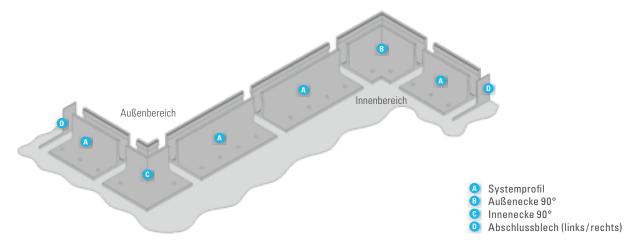

PVB / SGP: 1,52 mm

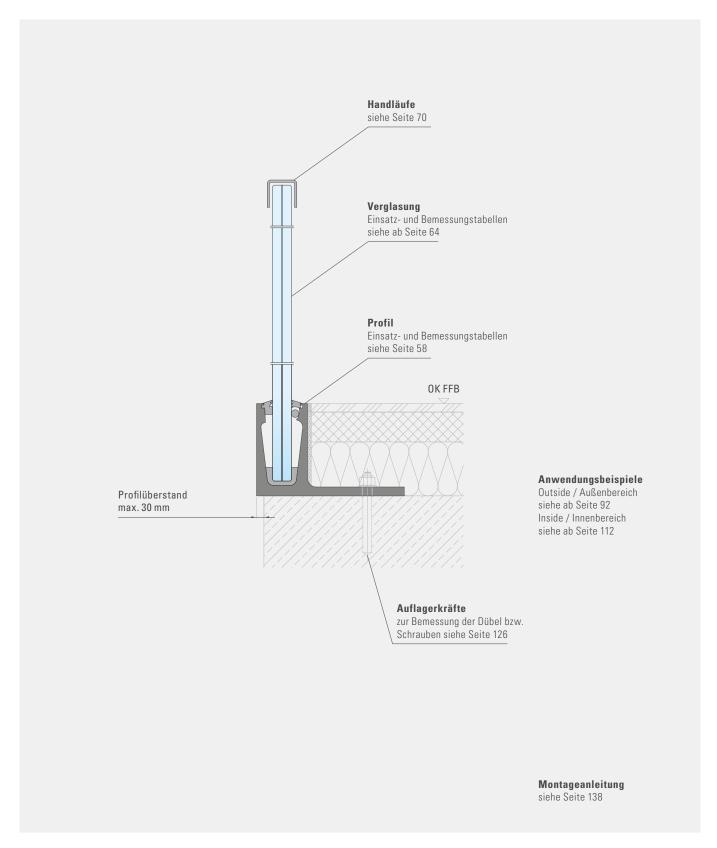
Oberflächen:

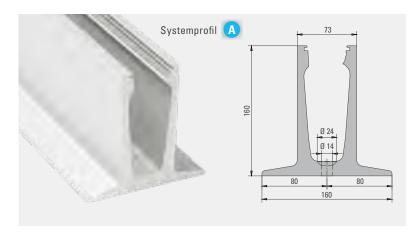




Befestigungsabstand					
öffentlicher Bereich 2,0 kN/m	öffentlicher Bereich ab 3,0 kN/m				
a = 200 mm	a = 100 mm				






Systemnavigation Top 1

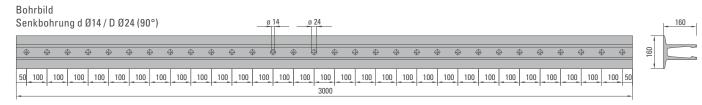
BALARDO core hd

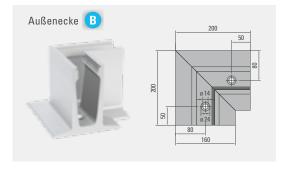
Systemprofil Top 2

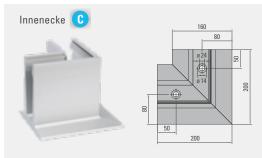
Material: Aluminium (EN AW-6063 T66)

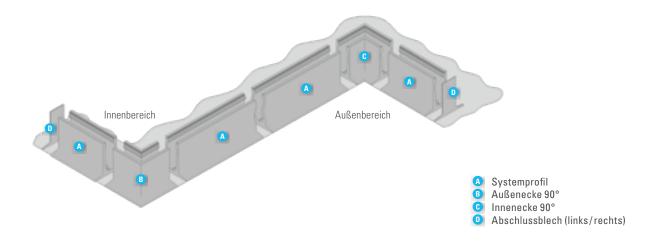
Lieferlänge: 3.000 mm Glaseinstand: ca. 135 mm

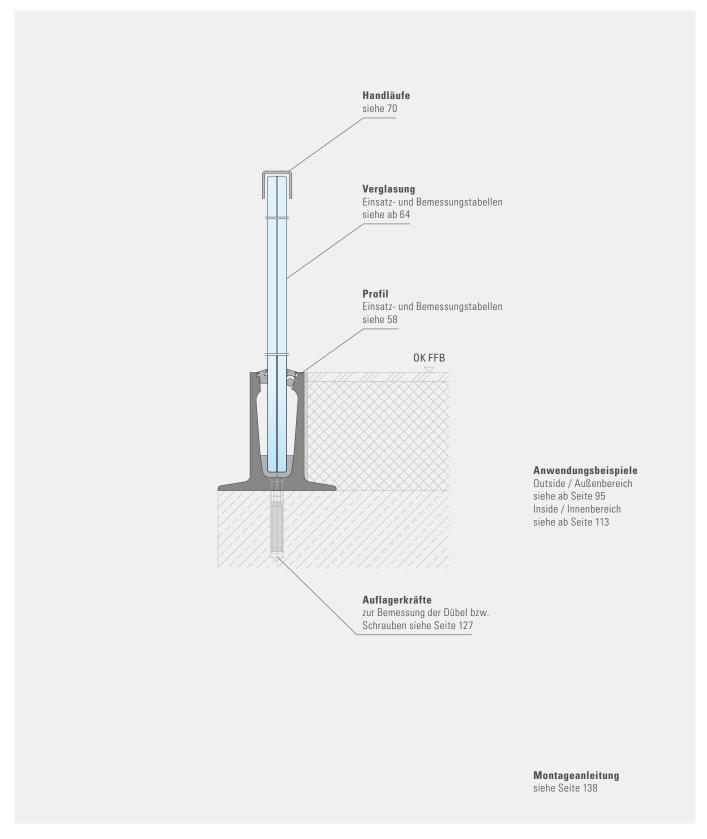
Glas: VSG 2 x 12 mm, 2 x 15 mm

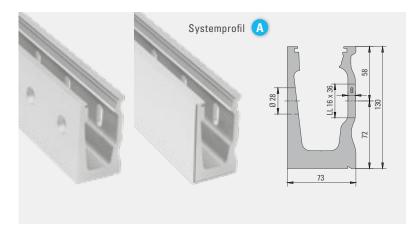

PVB / SGP: 1,52 mm


Oberflächen:




Befestigungsabstand	
öffentlicher Bereich 2,0 kN/m	öffentlicher Bereich 5,0 kN/m
a = 200 mm	a = 100 mm




Systemnavigation Top 2

BALARDO core hd

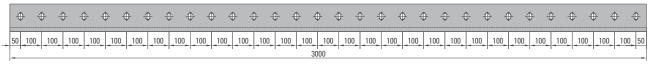
Systemprofil Side 1

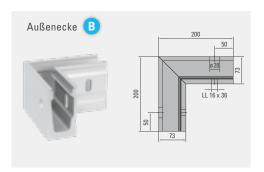
Material: Aluminium (EN AW-6063 T66)

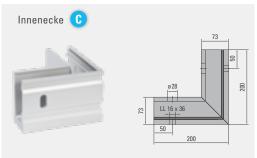
Lieferlänge: 3.000 mm Glaseinstand: ca. 105 mm

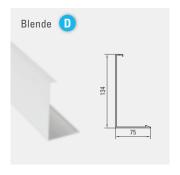
Glas: VSG 2 x 12 mm, 2 x 15 mm

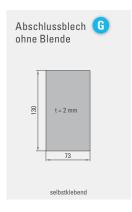
PVB / SGP: 1,52 mm

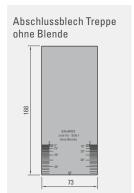

Oberflächen:

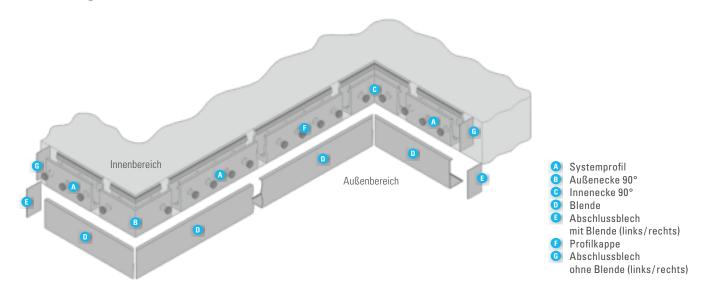


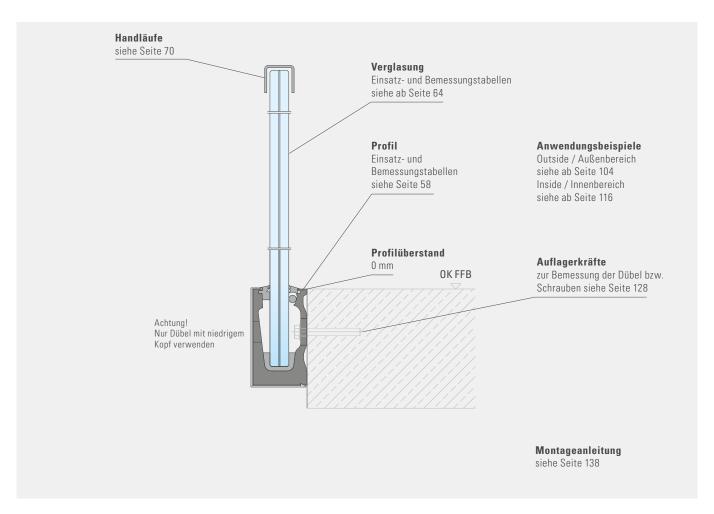

Befestigungsabstand	
öffentlicher Bereich 2,0 kN/m	öffentlicher Bereich ab 3,0 kN/m
a = 200 mm	a = 100 mm


Bohrbild (hinten Langloch 16 x 36 mm, vorne Ø 28 mm)



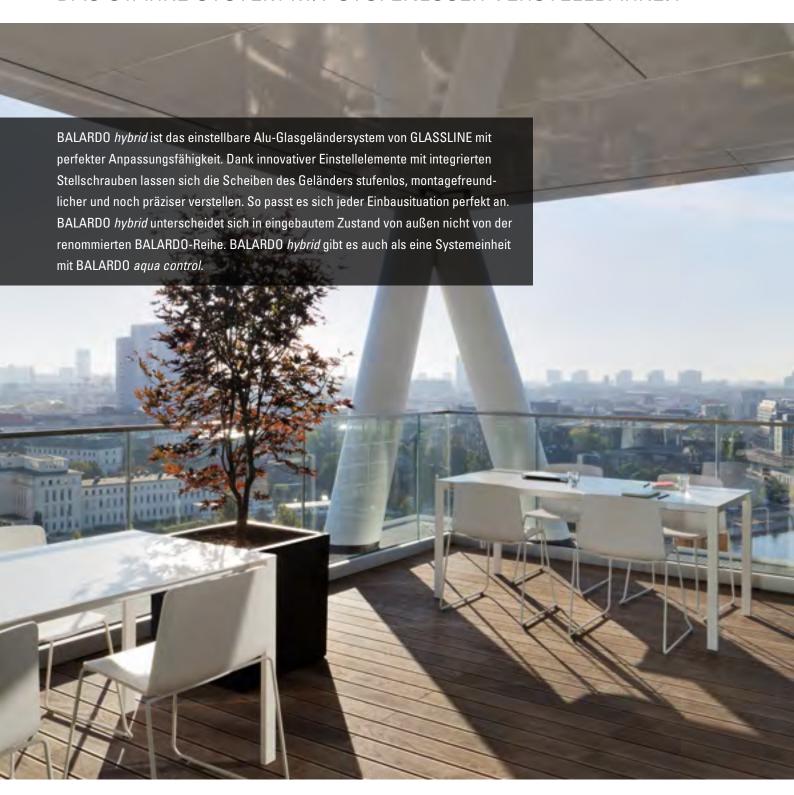






BALARDO core hd

Systemprofil Side 1


Systemnavigation Side 1

BALARDO hybrid

DAS STARKE SYSTEM MIT STUFENLOSER VERSTELLBARKEIT

DIE VORTEILE

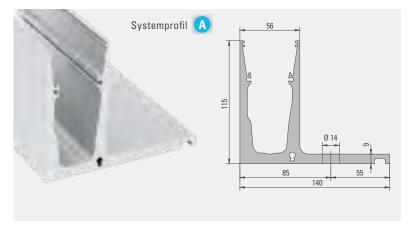
- Mit Allgemeinem bauaufsichtlichem Prüfzeugnis (AbP)
- Mit geprüfter Typenstatik
- ✓ Holmlasten bis 2 kN/m
- ✓ Mit integrierter Verstellbarkeit um max. 30 mm bei einer Glashöhe von 1.000 mm
- ✓ Einsatz auch in Sportstätten, geprüfte Ballwurfsicherheit
- ✓ LGA-geprüfte Sicherheit
- ✓ Scheibenbreiten bis 6.000 mm, Scheibenhöhen bis 2.100 mm
- ✓ Glas: VSG 2 x 8 mm und 2 x 10 mm mit PVB oder SGP 1,52 mm
- ✓ Für private und öffentliche Bauvorhaben
- ✓ Für den Innen- und Außenbereich
- ✓ Für Ebenen und Treppen
- ✓ BALARDO firstglass Glaskantenschutz anwendbar

DAS CLEVERFIX MONTAGESET

Lieferlänge: 3.000 mm

Lieferlänge: 1.000 mm

Lieferlänge: 3.000 mm



Schrauben: M 6 x 12 mm, Abstand: 200 mm

BALARDO hybrid

Systemprofil Top 1

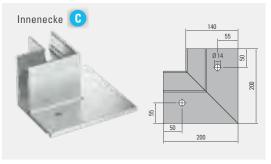
Material: Aluminium (EN AW-6063 T66)

Lieferlänge: 3.000 mm Glaseinstand: ca. 100 mm

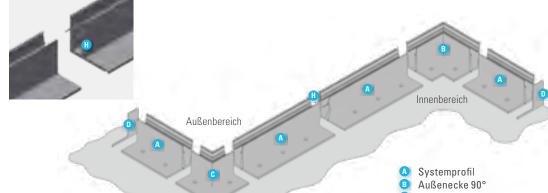
Glas: VSG 2 x 8 mm, 2 x 10 mm


PVB / SGP: 1,52 mm


Oberflächen:



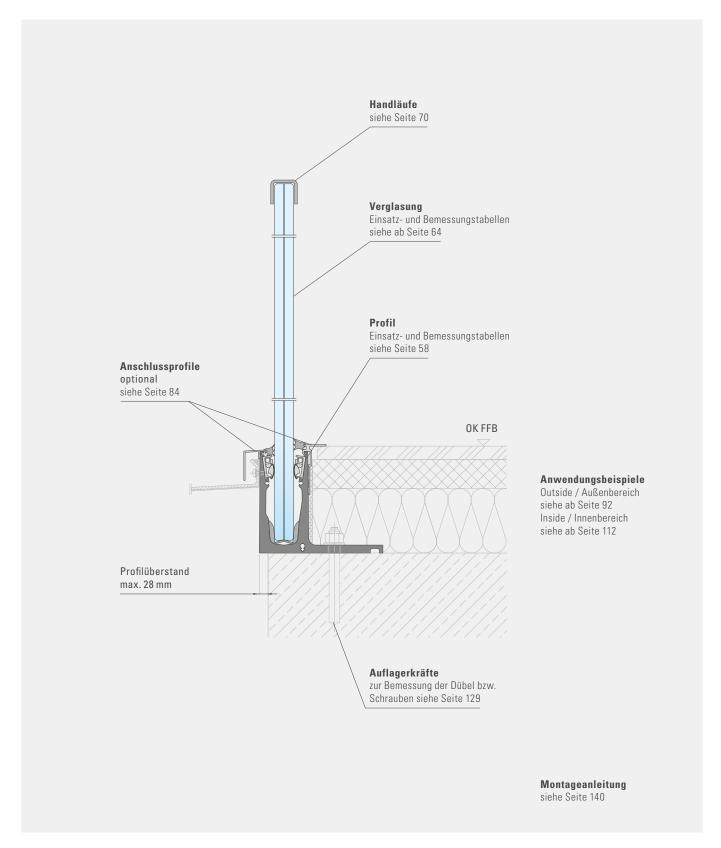
Befestigungsabstand												
privater Bereich 0,5 kN/m	öffentlicher Bereich 1,0 kN/m	öffentlicher Bereich 2,0 kN/m										
a = 500 mm	a = 250 mm	a = 125 mm										



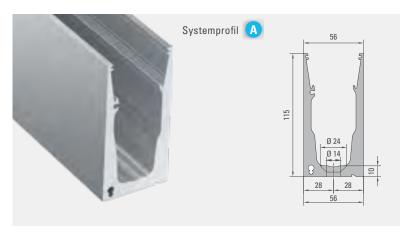
Innenecke 90°

Verbindungsstift

Abschlussblech (links/rechts)



Alle unsere Profile verfügen über das Allgemeine bauaufsichtliche Prüfzeugnis, geprüfte Typenstatik und sind LGA geprüft.


Systemnavigation Top 1

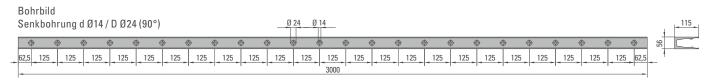
BALARDO hybrid

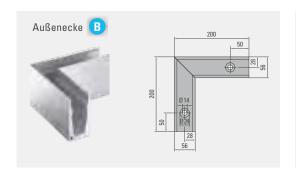
Systemprofil Top 4

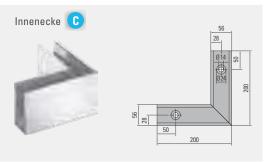
Material: Aluminium (EN AW-6063 T66)

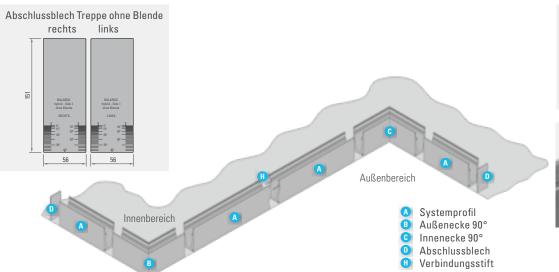
Lieferlänge: 3.000 mm Glaseinstand: ca. 100 mm

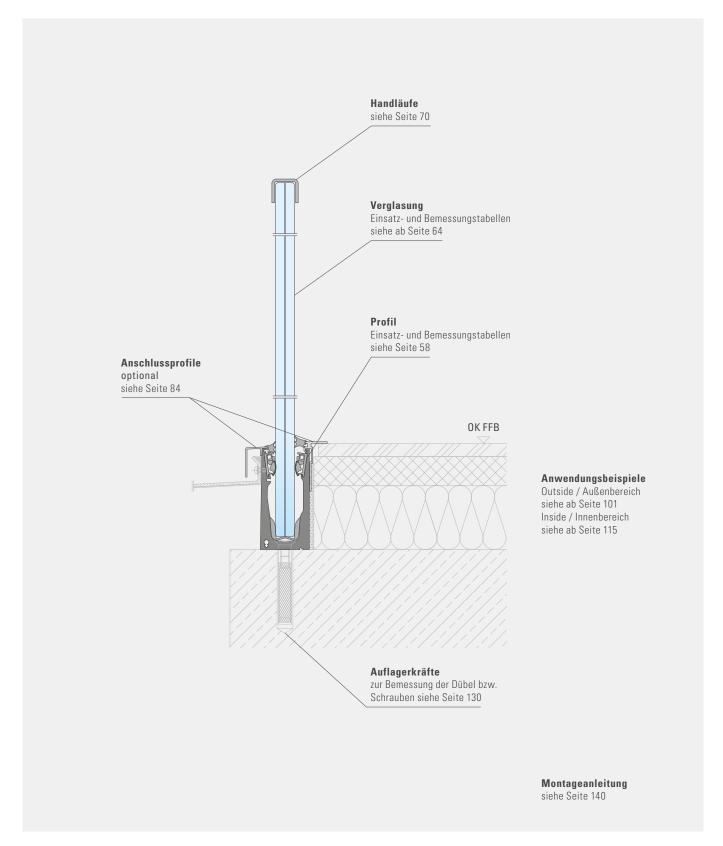
Glas: VSG 2 x 8 mm, 2 x 10 mm


PVB / SGP: 1,52 mm

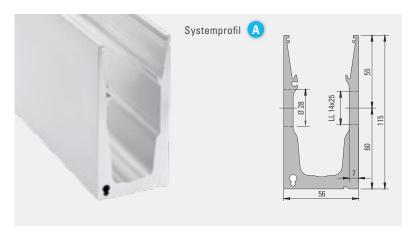

Oberflächen:




Befestigungsabstand												
privater Bereich 0,5 kN/m	öffentlicher Bereich 1,0 kN/m	öffentlicher Bereich 2,0 kN/m										
a = 500 mm	a = 250 mm	a = 125 mm										



Alle unsere Profile verfügen über das Allgemeine bauaufsichtliche Prüfzeugnis, geprüfte Typenstatik und sind LGA geprüft.


Systemnavigation Top 4

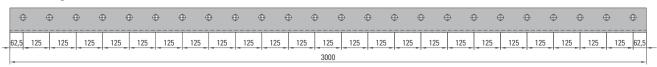
BALARDO hybrid

Systemprofil Side 1

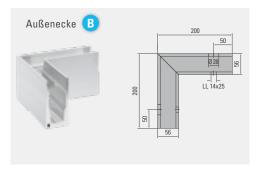
Material: Aluminium (EN AW-6063 T66)

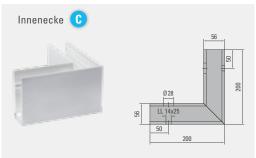
Lieferlänge: 3.000 mm Glaseinstand: ca. 100 mm

Glas: VSG 2 x 8 mm, 2 x 10 mm

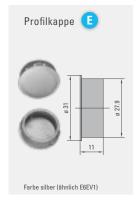

PVB / SGP: 1,52 mm

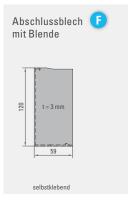
Oberflächen:

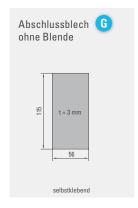


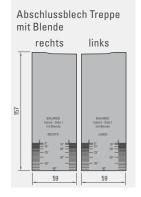

Befestigungsabst	Befestigungsabstand												
privater Bereich 0,5 kN/m	öffentlicher Bereich 1,0 kN/m	öffentlicher Bereich 2,0 kN/m											
a = 500 mm	a = 250 mm	a = 125 mm											

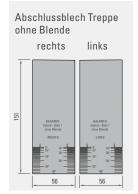
Bohrbild (hinten Langloch 14 x 25 mm, vorne Ø 28 mm)

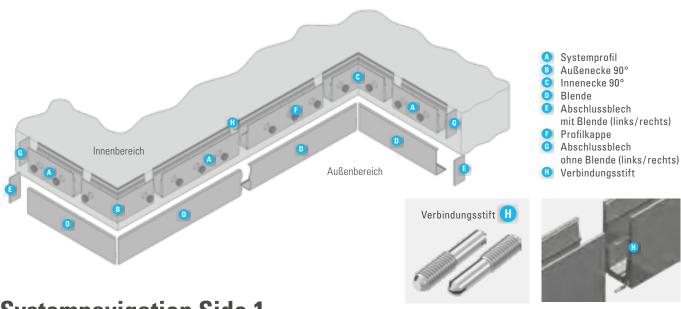


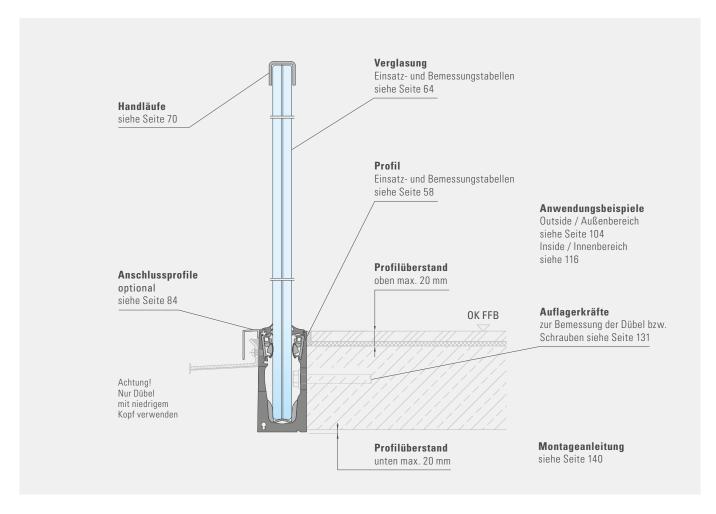






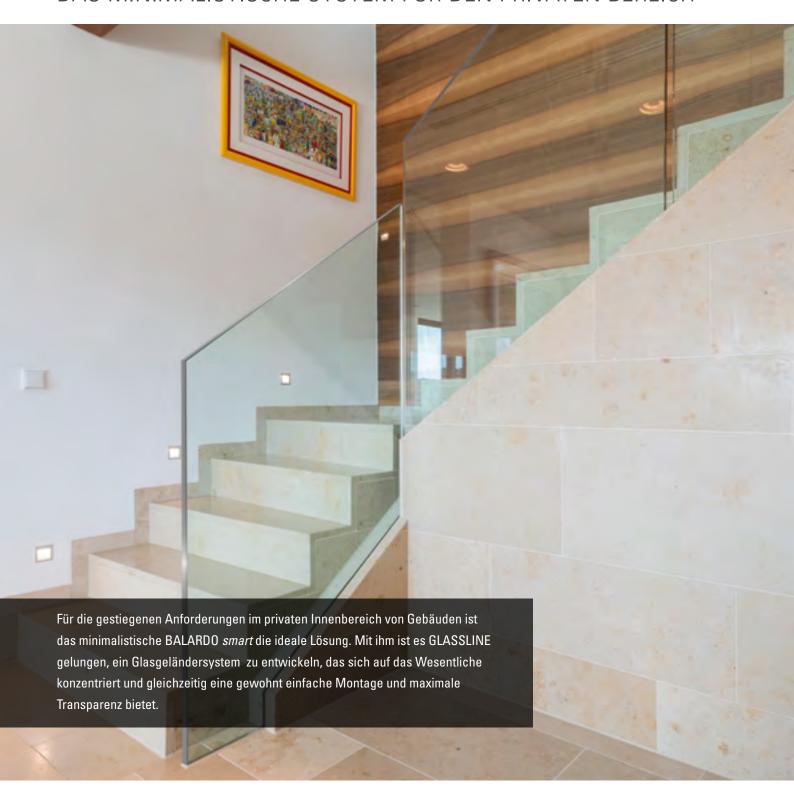






BALARDO hybrid

Systemprofil Side 1

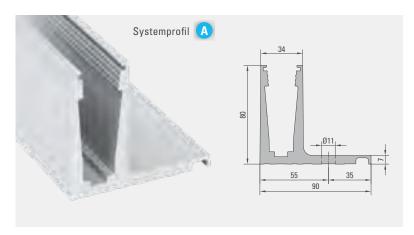

Systemnavigation Side 1

BALARDO smart

DAS MINIMALISTISCHE SYSTEM FÜR DEN PRIVATEN BEREICH

DIE VORTEILE

- Mit Allgemeinem bauaufsichtlichem Prüfzeugnis (AbP)
- Mit geprüfter Typenstatik
- ✓ Holmlasten bis 0,5 kN/m
- Mit begrenzter Verstellbarkeit
- ✓ LGA-geprüfte Sicherheit
- ✓ Scheibenbreiten bis 6.000 mm, Scheibenhöhen bis 1.100 mm
- ✓ Glas: VSG 2 x 6 mm und 2 x 8 mm mit PVB oder SGP 0,76 mm
- ✓ Für private Bauvorhaben
- ✓ Für den Innenbereich
- ✓ Für Ebenen und Treppen
- ✓ BALARDO firstglass Glaskantenschutz anwendbar

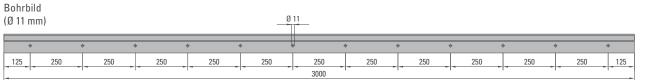

DAS EASYFIX MONTAGESET

BALARDO smart

Systemprofil Top 1

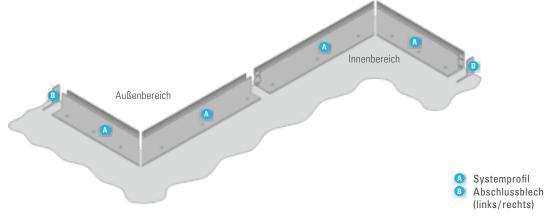
Material: Aluminium (EN AW-6063 T66)

Lieferlänge: 3.000 mm Glaseinstand: ca. 69 mm

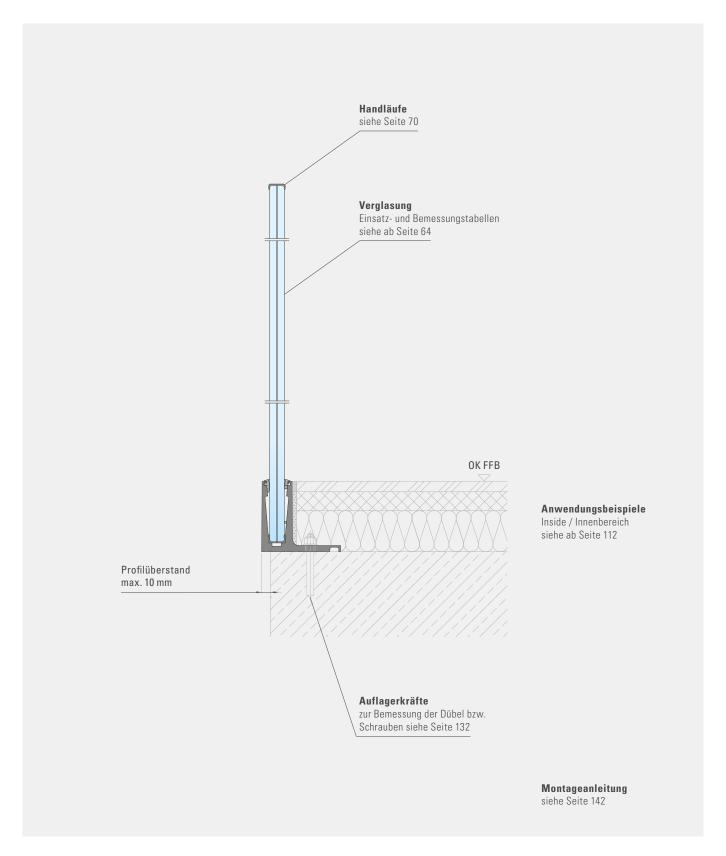

Glas: VSG 2 x 6 mm, 2 x 8 mm

PVB/SGP: 0,76 mm

Oberflächen:



Befestigungsabstand	
privater Bereich	
0,5 kN/m	
a = 500 mm	



Systemnavigation Top 1

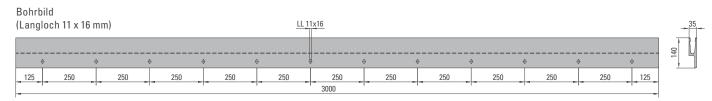
BALARDO smart

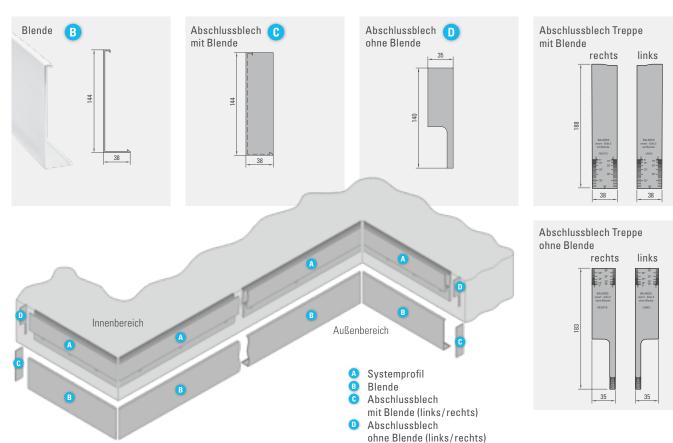
Systemprofil Side 3

Material: Aluminium (EN AW-6063 T66)

Lieferlänge: 3.000 mm Glaseinstand: ca. 69 mm

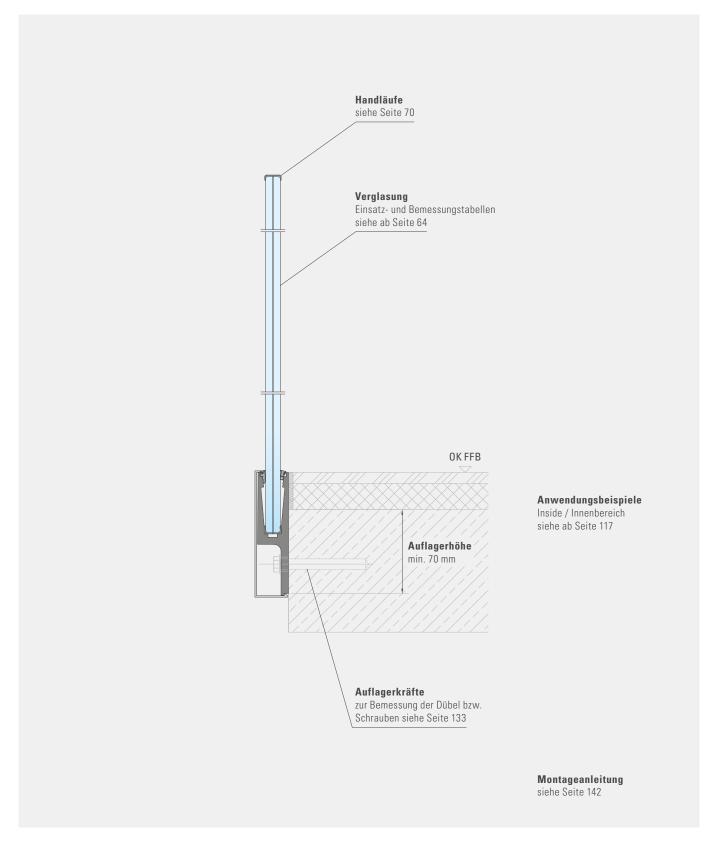
Glas: VSG 2 x 6 mm, 2 x 8 mm


PVB / SGP: 0,76 mm


Oberflächen:

Edelstahleffekt (E6EV1)

Befestigungsabstand
privater Bereich
0,5 kN/m
a = 500 mm



Alle unsere Profile verfügen über das Allgemeine bauaufsichtliche Prüfzeugnis, geprüfte Typenstatik und sind LGA geprüft.

Systemnavigation Side 3

WEITERE BALARDO-SYSTEME

BALARDO aqua control

DAS SYSTEM ZUR KONTROLLIERTEN BALKONENTWÄSSERUNG

BALARDO *aqua control* ist ein System zur kontrollierten Entwässerung von Balkonen und Dachterrassen. BALARDO *aqua control* gibt es integriert mit GLASSLINE Glasgeländer BALARDO *hybrid* oder als systemunabhängiges Entwässerungsprofil für andere Geländersysteme.

BALARDO steel

DAS SYSTEM FÜR HÖCHSTE ANSPRÜCHE

Das bewährte typengeprüfte Stahl-Glasgeländersystem in Modulbauweise zeigt als unangefochtenes Original bei öffentlichen und privaten Bauvorhaben sowie beim Einsatz in der Ebene und bei Treppen hohe Anwendungsflexibilität. Vor allem bei erhöhten Fußbodenaufbauten und unebenen Untergründen kommen seine konstruktiven Stärken voll zum Tragen. Zudem bietet dieses System eine große Anzahl an typenstatisch berechneten Bauanschlüssen.

BALARDO wave

DAS SYSTEM FÜR KURVENREICHE ARCHITEKTUR

Mit gebogenen Boden- und Handlaufprofilen nimmt das System elegant
geschwungene Gebäudegeometrien auf
und setzt diese mit den ästhetischen
Eigenschaften des Glases in hochtransparente Geländer um. Ob in öffentlichen
oder privaten Gebäuden, ob im Innenoder Außenbereich BALARDO wave
sorgt für eine atmosphärische Leichtigkeit in Alu- und Stahl-Ausführung.

GL/-SS///7E BALARDO

EINSATZ- UND BEMESSUNGSTABELLEN

TRAGPROFILE

TRAGPROFIL BALARDO core

Holmlast [kN/m]	BALARDO core								ax. Glas zul. Wind								
		600	700	800	900	1.000	1.100	1.200	1.300	1.400	1.500	1.600	1.700	1.800	1.900	2.000	2.100
	Top 1	2,88	1,98	1,40	1,02	0,76	0,49	0,30	0,16	0,05							
	Top 2	7,05	5,03	3,74	2,87	2,26	1,81	1,47	1,21	1,01	0,85	0,72	0,61	0,52	0,45	0,39	0,32
0.5	Тор 3	5,90	4,19	3,10	2,36	1,84	1,47	1,18	0,97	0,80	0,66	0,56	0,47	0,38	0,30	0,23	0,17
0,5	Top 4	7,76	5,56	4,15	3,19	2,51	2,02	1,65	1,36	1,14	0,96	0,82	0,70	0,60	0,52	0,45	0,40
	Side 1	10,26	7,64	5,55	4,45	3,41	2,76	2,27	1,89	1,60	1,36	1,17	1,05	0,88	0,80	0,68	0,60
	Side 2	7,45	5,33	3,97	3,05	2,40	1,93	1,57	1,30	1,08	0,91	0,77	0,66	0,57	0,49	0,43	0,37
	Top 1	2,88	1,98	1,40	1,02	0,76	0,49	0,30	0,16	0,05							
	Top 2	6,35	4,43	3,22	2,41	1,84	1,43	1,12	0,86	0,61	0,41	0,26	0,14	0,04			
	Top 3	5,20	3,59	2,58	1,90	1,42	1,08	0,72	0,46	0,26	0,11						
0,8	Top 4	7,76	5,56	4,15	3,19	2,51	2,02	1,65	1,36	1,14	0,96	0,82	0,70	0,60	0,52	0,43	0,33
	Side 1	9,90	7,04	5,22	3,98	3,11	2,48	2,01	1,64	1,36	1,14	0,95	0,81	0,68	0,55	0,43	0,33
	Side 2	6,75	4,73	3,45	2,59	1,98	1,55	1,22	0,97	0,73	0,52	0,35	0,22	0,11	0,03		
	Top 1	2,88	1,98	1,40	1,02	0,76	0,49	0,30	0,16	0,05							
	Top 2	5,88	4,03	2,87	2,09	1,56	1,04	0,64	0,35	0,13							
4.0	Top 3	4,74	3,19	2,23	1,53	0,91	0,47	0,17									
1,0	Top 4	7,76	5,56	4,15	3,19	2,51	2,02	1,65	1,36	1,14	0,92	0,67	0,48	0,33	0,20		
	Side 1	9,43	6,64	4,87	3,67	2,84	2,23	1,77	1,43	1,16	0,92	0,67	0,48	0,33	0,20		
	Side 2	6,28	4,33	3,10	2,27	1,70	1,24	0,81	0,50	0,26	0,08						
	Top 1	2,30	1,39	0,67	0,22												
	Top 2	4,71	2,91	1,45	0,53												
	Top 3	3,45	1,51	0,38	2,00												
1,5	Top 4	7,18	5,06	3,71	2,80	2,06	1,29	0,74	0,33	0,03							
	Side 1	8,26	5,64	3,99	2,90	2,06	1,29	0,74	0,33	0,03							
	Side 2	5,12	3,33	1,83	0,83	0,17											

TRAGPROFIL **BALARDO** hybrid

Holmlast [kN/m]	BALARDO hybrid		max. Glashöhe [mm] bei zul. Windlast [kN/m²]														
		600	700	800	900	1.000	1.100	1.200	1.300	1.400	1.500	1.600	1.700	1.800	1.900	2.000	2.100
										4.00						0.74	
	Top 1	8,37	6,00	4,49	3,46	2,73	2,20	1,80	1,49	1,25	1,06	0,90	0,78	0,67	0,58	0,51	0,44
0.5	Top 1 gedreht	8,37	6,00	4,49	3,46	2,73	2,20	1,80	1,49	1,25	1,06	0,90	0,78	0,67	0,58	0,51	0,44
0,5	Top 4	8,37	6,00	4,49	3,46	2,73	2,20	1,80	1,49	1,25	1,06	0,90	0,78	0,67	0,58	0,51	0,44
	Side 1	11,17	8,06	6,06	4,71	3,74	3,03	2,50	2,09	1,77	1,51	1,30	1,13	0,98	0,86	0,76	0,67
	Top 1	8,37	6,00	4,49	3,46	2,73	2,20	1,80	1,49	1,25	1,06	0,90	0,78	0,67	0,58	0,51	0,41
0,8	Top 1 gedreht	7,67	5,40	3,96	2,99	2,31	1,82	1,45	1,17	0,95	0,76	0,57	0,41	0,28	0,18	0,10	0,03
0,0	Top 4	8,37	6,00	4,49	3,46	2,73	2,20	1,80	1,49	1,25	1,06	0,90	0,78	0,67	0,58	0,51	0,41
	Side 1	10,47	7,46	5,54	4,24	3,32	2,65	2,15	1,77	1,47	1,23	1,03	0,88	0,75	0,64	0,52	0,41

TRAGPROFIL **BALARDO** hybrid

Holmlast [kN/m]	BALARDO hybrid									höhe [m dlast [kľ	_						
		600	700	800	900	1.000	1.100	1.200	1.300	1.400	1.500	1.600	1.700	1.800	1.900	2.000	2.100
	Top 1	8,37	6,00	4,49	3,46	2,73	2,20	1,80	1,49	1,25	1,04	0,81	0,60	0,43	0,30	0,18	0,09
1,0	Top 1 gedreht	7,20	5,00	3,61	2,68	2,03	1,56	1,19	0,82	0,54	0,32	0,15	0,02				
1,0	Top 4	8,37	6,00	4,49	3,46	2,73	2,20	1,80	1,49	1,25	1,04	0,81	0,60	0,43	0,30	0,18	0,09
	Side 1	10,00	7,06	5,19	3,93	3,04	2,40	1,92	1,55	1,27	1,04	0,81	0,60	0,43	0,30	0,18	0,09
	Top 1	7,78	5,50	4,05	3,07	2,34	1,57	0,97	0,53	0,21							
	Top 1 gedreht	6,03	4,00	2,69	1,51	0,72	0,18	0,01	0,00	0,21							
1,5	Top 4	7,78	5,50	4,05	3,07	2,34	1,57	0,97	0,53	0,21							
	Side 1	8,84	6,06	4,31	3,15	2,34	1,57	0,97	0,53	0,21							
	Top 1	7,20	5,00	3,23	1,73	0,74	0,06										
	Top 1 gedreht	4,78	2,15	0,60	1,70	0,14	0,00										
2,0	Top 4	8,52	5,69	3,92	2,36	1,24	0,48										
	Side 1	7,67	5,06	3,23	1,73	0,74	0,06										

TRAGPROFIL **BALARDO** core hd

Holmlast [kN/m]	BALARDO core hd								ax. Glas ul. Wind	_	_						
		600	700	800	900	1.000	1.100	1.200	1.300	1.400	1.500	1.600	1.700	1.800	1.900	2.000	2.100
	Top 1	19,47	14,02	10,51	8,13	6,45	5,21	4,28	3,57	3,00	2,55	2,19	1,89	1,64	1,44	1,26	1,11
1,0	Top 2	32,71	23,75	17,96	14,02	11,22	9,15	7,60	6,39	5,44	4,67	4,05	3,54	3,12	2,76	2,45	2,19
	Side 1	19,54	14,07	10,55	8,16	6,47	5,23	4,30	3,58	3,02	2,57	2,20	1,90	1,65	1,44	1,27	1,12
	Top 1	18,30	13,02	9,64	7,36	5,75	4,58	3,70	3,03	2,50	2,09	1,75	1,48	1,26	0,99	0,77	0,59
1,5	Top 2	31,55	22,75	17.09	13,24	10,52	8,52	7,01	5,85	4,94	4,21	3,62	3,13	2,73	2,39	2,10	1,86
.,,	Side 1	18,37	13,07	9,68	7,39	5,77	4,60	3,72	3,04	2,52	2,10	1,76	1,49	1,26	1,00	0,78	0,59
	T 1	17.14	10.00	0.70	0.50	F 0F	2.04	0.10	2.40	1.01	1 07	0.04	0.00	0.00	0.11		
2,0	Top 1 Top 2	17,14 30,38	12,02 21,75	8,76 16,21	6,58 12,47	5,05 9,82	3,94 7,88	3,12 6,43	2,49 5,31	1,91 4,44	1,37 3,74	0,94 3,18	0,60 2,72	0,33 2,34	0,11 2,02	1.75	1,53
2,0	Side 1	17,20	12,07	8,80	6,61	5,07	3,96	3,13	2,50	1,93	1,39	0,96	0,62	0,35	0,13	1,/3	1,33
	Olde I	17,20	12,07	0,00	0,01	3,01	0,00	0,10	2,30	1,00	1,00	0,00	0,02	0,00	0,10		
	Top 1	14,80	10,02	7,01	5,02	3,08	1,72	0,75	0,05								
3,0	Top 2	28,08	19,75	14,46	10,91	8,42	6,61	5,26	4,23	3,44	2,68	1,96	1,39	0,93	0,56	0,26	0,01
	Side 1	14,87	10,07	7,05	5,05	3,11	1,75	0,78	0,07								
	Top 1	12,47	7,65	3,77	1,33												
4,0	Top 2	25,71	17,75	12,71	9,35	7,02	5,26	3,49	2,19	1,20	0,46						
	Side 1	12,54	7,73	3,84	1,39												
	Top 1	8,56	2,89														
5,0	Top 2	23,38	15,75	10,96	7,44	4,36	2,23	0,71									
	Side 1	8,67	2,97	,		,	,	,									

GL/-SS///7E BALARDO

GLAS – FREIRÄUME FÜR IHRE GESTALTUNG

GENIESSEN SIE MIT **BALARDO** FREIRÄUME AUCH BEIM GLAS

Die hohe Transparenz und die Vielfalt an Kombinationsmöglichkeiten von BALARDO korrespondieren mit jedem Dekor, besonders in Verbindung mit BALARDO *firstglass* Glaskantenschutz oder dem systemangepassten Glaskantenschutzprofil aus geschliffenem Edelstahl.

Das filigrane System eignet sich für jede individuelle Glasgestaltung und unterstützt jedes Motiv und Muster harmonisch in seiner Wirkung. Ob bedruckte oder farbige PVB-Folie oder bedrucktes oder emailliertes Glas – Ihrer Kreativität sind keine Grenzen gesetzt.

Mit BALARDO verfügen Sie über typenstatisch geprüfte Systemkomponenten. Für ein Höchstmaß an Sicherheit wird ausschließlich Verbundsicherheitsglas (VSG) eingesetzt.

BALARDO kann als Glasgeländersystem ohne zusätzliche Prüfungen realisiert werden. Dadurch erschließen sich ungeahnte Gestaltungsmöglichkeiten.

Mit Allgemeinem bauaufsichtlichem Prüfzeugnis (AbP)

Mit geprüfter Typenstatik

LGA geprüfte Sicherheit

Einsatz auch in Sportstätten. Ballwurfsicher.

DIN 18008-4 geprüft

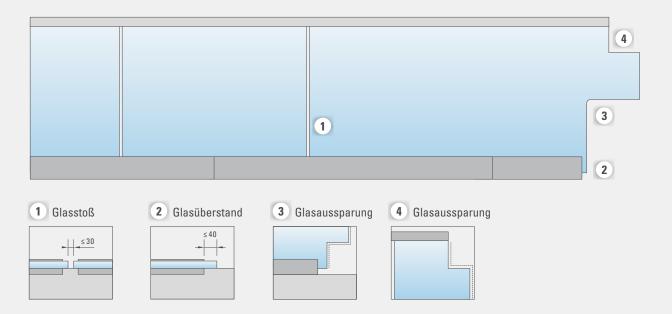
z.B. mit einem Foto

z.B. mit einem Muster

z.B. mit Ihrem Firmenlogo

GL/-SS///7E BALARDO

Glasaufbau / Anwendung


Verbundsicherheitsglas (VSG)	Glasaufbauten										
aus											
ESG (Einscheibensicherheitsglas)	2 x 6 mm	2 x 8 mm	2 x 10 mm	2 x 12 mm	2 x 15 mm						
TVG (teilvorgespanntes Glas)		2 x 8 mm	2 x 10 mm	2 x 12 mm							
Float (Floatglas)		2 x 8 mm	2 x 10 mm	2 x 12 mm	2 x 15 mm						

mit Verbundschicht 1,52 mm aus PVB, SGP oder gleichwertig (bei BALARDO smart Verbundschicht 0,76 mm)

PVB: Polyvinylbutyral-Folie

SGP: SentryGlas®

Glaskanten geschliffen oder poliert. Glas- und Profilstöße sind gegen eindringende Feuchtigkeit zu schützen.

Bedruckung / Emaillierung

VSG-ESG Scheiben dürfen bedruckt / emailliert werden.

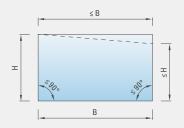
Die Dimensionierung der bedruckten / emaillierten Glasscheiben erfolgt über die Nachweise für VSG-TVG Scheiben mit gleicher Stärke und Höhe.

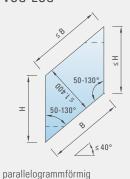
Füll- und Endscheiben 100 - 500 mm müssen oben lastabtragend verbunden werden.

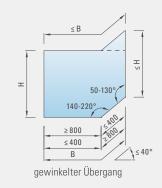
Handlaufstoß:

750 mm vom Glasstoß in einer Geraden, bei nicht biegesteifer Handlaufverbindung.

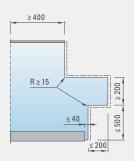
 $100\ \mathsf{mm}\ \mathsf{vom}\ \mathsf{Glass} \mathsf{to} \\ \mathsf{S}\ \mathsf{in}\ \mathsf{einer}\ \mathsf{Geraden}, \ \mathsf{bei}\ \mathsf{biegesteifer}\ \mathsf{Handlaufverbindung}.$


* Offene, zugängliche Glaskanten sind konstruktiv zu schützen, z.B. mit dem Glaskantenschutzprofil vertikal Seite 75 . Glasabmessungen siehe Einsatz- und Bemessungstabellen Glas ab Seite 64


Glasscheiben / Modellscheiben


Rechteck-/ Trapezscheiben VSG - ESG / TVG / Float

Glasbreite B = 500 - 6.000* mmmax. Glashöhe H = 2.100 mm**


Abgeschrägte Glasscheiben / Modellscheiben vsg-esg

Glasbreite B = 500 - 3.000* mmmax. Glashöhe H = 1.800 mm**

zulässige Glasaussparungen VSG-ESG 2x10, 2x12 und 2x15 mm

Im unteren Bereich sind die Aussparungen nur bis zu einer Größe von 200 x 500 mm zulässig. Für die Aussparungen im oberen Bereich gibt es keine Beschränkungen.

Alle von den Verkehrsflächen zugänglichen Glaskanten müssen durch angrenzende Bauteile mit einem Abstand von höchstens 30 mm oder mit einem Kantenschutzprofil geschützt werden.

Die Dimensionierung der Glasscheiben aus VSG-ESG mit Glasaussparung erfolgt über die Nachweise für VSG-Float Scheiben ohne Aussparung mit gleicher Stärke und Höhe.

- * Bei lastverteilendem Handlauf siehe Seite 75.
- ** Glasabmessungen siehe Einsatz- und Bemessungstabellen Glas ab Seite 64. Profilabstand ≤ 40 mm.

 Offene, zugängliche Glaskanten sind konstruktiv zu schützen, z.B. mit dem Glaskantenschutzprofil vertikal Seite 75.

GL/-SS///7E BALARDO

EINSATZ- UND BEMESSUNGSTABELLEN

GLAS

Glas VSG-**ESG** — Anwendung Ebene

Holmlast [kN/m]	Glas VS										höhe [m dlast [k/	_						
			600	700	800	900	1.000	1.100	1.200	1.300	1.400	1.500	1.600	1.700	1.800	1.900	2.000	2.100
		PVB	4,41	2,89	1,99	1,42	1,04	0,77										
	2x6	SGP	11,17	8,06	6,06	4,71	3,71	2,94										
0.5	0.0	PVB	8,94	6,05	4,33	3,21	2,46	1,93	1,54	1,24	1,02	0,84	0,70					
0,5	2x8	SGP	11,17	8,06	6,06	4,71	3,74	3,03	2,50	2,09	1,77	1,51	1,30					
	2x10	PVB	11,17	8,06	6,06	4,71	3,74	3,03	2,50	2,09	1,77	1,51	1,30	1,13	0,98	0,86	0,76	0,67
	2.0	SGP	11,17	8,06	6,06	4,71	3,74	3,03	2,50	2,09	1,77	1,51	1,30	1,13	0,98	0,86	0,76	0,67
		PVB	3,57	2,18	1,15	0,47	0,04											
0,8	2x6	SGP	10,47	7,46	5,54	4,24	3,25	2,53										
	2x8	PVB	8,09	5,35	3,72	2,68	1,99	1,50	1,15	0,80	0,53	0,32	0,16					
		SGP	10,47	7,46	5,54	4,24	3,32	2,65	2,15	1,77	1,47	1,23	1,03					
	2x10	PVB	10,47	7,46	5,54	4,24	3,32	2,65	2,15	1,77	1,47	1,23	1,03	0,88	0,75	0,64	0,52	0,41
		SGP	10,47	7,46	5,54	4,24	3,32	2,65	2,15	1,77	1,47	1,23	1,03	0,88	0,75	0,64	0,52	0,41
		PVB	2,99	1,17	0,19													
	2x6	SGP	10,00	7,06	5,19	3,77	2,82	2,15										
	2x8	PVB	7,53	4,88	3,31	2,33	1,66	1,01	0,56	0,24	0,00							
		SGP	10,00	7,06	5,19	3,93	3,04	2,40	1,92	1,55	1,27	1,04	0,81					
1.0	0.40	PVB	10,00	7,06	5,19	3,93	3,04	2,40	1,92	1,55	1,27	1,04	0,81	0,60	0,43	0,30	0,18	0,09
1,0	2x10	SGP	10,00	7,06	5,19	3,93	3,04	2,40	1,92	1,55	1,27	1,04	0,81	0,60	0,43	0,30	0,18	0,09
	2x12	PVB	22,37	14,55	10,05	7,25	5,40	4,12	3,20	2,52	2,00	1,57	1,12	0,99	0,87	0,78	0,69	0,63
	2.8.1.2	SGP	32,71	23,75	17,96	14,02	11,22	9,15	7,60	6,39	5,44	4,67	4,05	3,54	3,12	2,76	2,45	2,19
	2x15	PVB	32,71	23,75	17,50	12,89	9,82	7,67	6,12	4,96	4,08	3,39	2,84	2,49	2,20	1,96	1,76	1,58
	2/13	SGP	32,71	23,75	17,96	14,02	11,22	9,15	7,60	6,39	5,44	4,67	4,05	3,54	3,12	2,76	2,45	2,19
		PVB	8,84	6,06	4,31	3,15	2,34	1,57	0,89	0,39	0,03							
	2x10	SGP	8,84	6,06	4,31	3,15	2,34	1,57	0,97	0,53	0,21							
	0.40	PVB	17,90	13,19	9,28	6,79	5,11	3,93	3,07	2,44	1,95	1,53	1,10	0,97	0,86	0,77	0,69	0,62
1,5	2x12	SGP	31,55	22,75	17,09	13,24	10,52	8,52	7,01	5,85	4,94	4,21	3,62	3,13	2,73	2,39	2,10	1,86
	015	PVB	30,27	22,62	16,22	12,11	9,32	7,34	5,90	4,81	3,98	3,32	2,80	2,46	2,18	1,95	1,75	1,58
	2x15	SGP	31,55	22,75	17,09	13,24	10,52	8,52	7,01	5,85	4,94	4,21	3,62	3,13	2,73	2,39	2,10	1,86

4,0

5,0

PVB

SGP

PVB

SGP

PVB

SGP

2x15

2x12

2x15

23,47

25,71

23,38

20,75

23,38

16,68

17,75

15,75

14,31

15,75

11,13

12,71

10,96

7,88

10,96

7,65

9,35

7,44

3,40

7,44

4,38

7,02

4,36

0,60

4,36

Holmlast [kN/m]		SG-ESG m]	max. Glashöhe [mm] bei zul. Windlast [kN/m²]															
			600	700	800	900	1.000	1.100	1.200	1.300	1.400	1.500	1.600	1.700	1.800	1.900	2.000	2.100
2,0		PVB	8,52	5,69	3,92	2,24	0,95	0,10										
	2x10	SGP	8,52	5,69	3,92	2,36	1,24	0,48										
	010	PVB	16,54	12,01	8,26	5,90	4,31	3,21	2,18	1,36	0,76	0,31						
	2x12	SGP	30,38	21,75	16,21	12,47	9,82	7,88	6,43	5,31	4,44	3,74	3,18	2,72	2,34	2,02	1,75	1,53
	2x15	PVB	28,91	21,43	15,21	11,22	8,53	6,63	5,25	4,22	3,43	2,81	2,32	2,04	1,81	1,61	1,45	1,31
		SGP	30,38	21,75	16,21	12,47	9,82	7,88	6,43	5,31	4,44	3,74	3,18	2,72	2,34	2,02	1,75	1,53
	0.40	PVB	13,82	9,63	6,01	3,03	1,14											
0.0	2x12	SGP	28,08	19,75	14,46	10,91	8,42	6,61	5,26	4,23	3,44	2,68	1,96	1,39	0,93	0,56	0,26	0,01
3,0	015	PVB	26,19	19,06	13,17	9,43	6,94	5,20	3,79	2,48	1,51	0,79	0,23	0,20	0,18	0,16	0,15	0,01
	2x15	SGP	28,08	19,75	14,46	10,91	8,42	6,61	5,26	4,23	3,44	2,68	1,96	1,39	0,93	0,56	0,26	0,01
		PVB	10,73	5,31	1,16													
	2x12		,.	-,5.	.,	9,35	7,02	5,26	3,49	2,19	1,20	0,46						

2,20

5,26

2,23

2,23

0,70

3,49

0,71

0,71

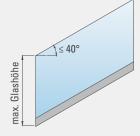
2,19

1,20

0,46

Ohne lastabtragende Handlaufanbindung möglich. Anstelle eines Handlaufs kann auch ein Glaskantenschutz verwendet werden. Max. Glasbreite: 6.000 mm.

Lastverteilender Handlauf und Handlaufanbindung am Baukörper (tragende Bauteile) bei den Auslaufelementen erforderlich.


Das Breitenverhältnis der benachbarten Glasscheiben beträgt min. 1:4 und max. 4:1. Max. Glasbreite 3.000 mm, siehe Seite 75.

EINSATZ- UND BEMESSUNGSTABELLEN

GLAS

Glas VSG-**ESG** — Anwendung Treppe

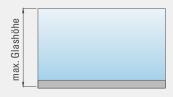
Holmlast [kN/m]	Glas VSG-ESG [mm]								Glashöhe Windlast						
			600	700	800	900	1.000	1.100	1.200	1.300	1.400	1.500	1.600	1.700	1.800
	2x8	PVB	6,96	4,68	3,31	2,44	1,84	1,43	1,12	0,90	0,72	0,59	0,47	0,41	0,37
0,5	ZXŏ	SGP	11,17	8,06	6,06	4,71	3,74	3,03	2,50	2,09	1,77	1,51	1,30	1,13	0,98
0,5	2x10	PVB	11,17	7,96	5,73	4,30	3,32	2,63	2,12	1,73	1,44	1,20	1,02	0,90	0,79
	2X10	SGP	11,17	8,06	6,06	4,71	3,74	3,03	2,50	2,09	1,77	1,51	1,30	1,13	0,98
	2x8	PVB	6,13	3,98	2,71	1,91	1,38	0,88	0,51						
0,8		SGP	10,47	7,46	5,54	4,24	3,32	2,65	2,15	1,77	1,47	1,23	1,03	0,88	0,75
	2x10	PVB	10,47	7,26	5,14	3,77	2,85	2,20	1,73	1,38	1,11	0,90	0,69	0,61	0,54
		SGP	10,47	7,46	5,54	4,24	3,32	2,65	2,15	1,77	1,47	1,23	1,03	0,88	0,75
	0.0	PVB	5,57	3,51	2,31	1,35									
	2x8	SGP	10,00	7,06	5,19	3,93	3,04	2,40	1,92	1,55	1,27	1,04	0,81	0,60	0,43
	2x10	PVB	10,00	6,80	4,74	3,42	2,54	1,92	1,48	1,07	0,72				
1.0		SGP	10,00	7,06	5,19	3,93	3,04	2,40	1,92	1,55	1,27	1,04	0,81	0,60	0,43
1,0	0.10	PVB	10,00	7,06	5,19	3,93	3,04	2,40	1,92	1,55	1,27	1,04	0,81	0,60	0,43
	2x12	SGP	10,00	7,06	5,19	3,93	3,04	2,40	1,92	1,55	1,27	1,04	0,81	0,60	0,43
	2x15	PVB	10,00	7,06	5,19	3,93	3,04	2,40	1,92	1,55	1,27	1,04	0,81	0,60	0,43
	ZXIJ	SGP	10,00	7,06	5,19	3,93	3,04	2,40	1,92	1,55	1,27	1,04	0,81	0,60	0,43
	0.40	PVB	8,84	5,64	3,74	2,37	1,27								
	2x10	SGP	8,84	6,06	4,31	3,15	2,34	1,57	0,97	0,53	0,21				
4.5	0.10	PVB	13,72	10,01	6,95	5,00	3,70	2,79	2,13	1,48	0,96				
1,5	2x12	SGP	31,55	22,75	17,09	13,24	10,52	8,52	7,01	5,85	4,94	4,21	3,62	3,13	2,73
	015	PVB	23,71	17,62	12,55	9,30	7,10	5,54	4,41	3,56	2,91	2,41	2,00	1,76	1,56
	2x15	SGP	31,55	22,75	17,09	13,24	10,52	8,52	7,01	5,85	4,94	4,21	3,62	3,13	2,73

Holmlast [kN/m]		SG-ESG nm]	max. Glashöhe [mm] bei zul. Windlast [kN/m²]													
			600	700	800	900	1.000	1.100	1.200	1.300	1.400	1.500	1.600	1.700	1.800	
		PVB	7,67	5,06	3,23	1,73	0,74	0,06								
	2x10	SGP	7,67	5,06	3,23	1,73	0,74	0,06								
2,0	2x12	PVB	12,38	8,84	5,94	4,12	2,61	1,45								
2,0		SGP	30,38	21,75	16,21	12,47	9,82	7,88	6,43	5,31	4,44	3,74	3,18	2,72	2,34	
	2x15	PVB	22,36	16,45	11,54	8,42	6,31	4,84	3,77	2,97	2,37	1,73	1,21	1,06	0,94	
		SGP	30,38	21,75	16,21	12,47	9,82	7,88	6,43	5,31	4,44	3,74	3,18	2,72	2,34	
	2v12	PVB	9,69	5,80												
2.0	2x12	SGP	28,05	19,75	14,46	10,91	8,42	6,61	5,26	4,23	3,44	2,68	1,96	1,39	0,93	
3,0	2x15	PVB	19,68	14,11	9,53	6,65	4,55	2,69								
		SGP	28,05	19,75	14,46	10,91	8,42	6,61	5,26	4,23	3,44	2,68	1,96	1,39	0,93	
		PVB														
4.0	2x12	SGP	25,71	17,75	12,71	9,35	7,02	5,26	3,49	2,19						
4,0	215	PVB	16,99	11,76	6,79											
	2x15	SGP	25,71	17,75	12,71	9,35	7,02	5,26	3,49	2,19	1,20	0,46				
		PVB														
	2x12	SGP	23,38	15,75	10,96	7,44	4,36	2,21								
5,0		PVB	14,25	7,32	-,722	,	,,,,,,	,								
	2x15	SGP	23,38	15,75	10,96	7,44	4,36	2,21	0,71							

Ohne lastabtragende Handlaufanbindung möglich. Anstelle eines Handlaufs kann auch ein Glaskantenschutz verwendet werden. Max. Glasbreite: 3.000 mm.

Lastverteilender Handlauf und Handlaufanbindung am Baukörper (tragende Bauteile) bei den Auslaufelementen erforderlich.

Das Breitenverhältnis der benachbarten Glasscheiben beträgt min. 1:4 und max. 4:1. Max. Glasbreite 3.000 mm, siehe Seite 75.



GL/-SS///7E BALARDO

EINSATZ- UND BEMESSUNGSTABELLEN

GLAS

GLAS VSG-TVG - Anwendung Ebene

Holmlast [kN/m]		SG-TVG nm]						. Glashöhe . Windlast [
			600	700	800	900	1.000	1.100	1.200	1.300	1.400	1.500	1.600
	0.0	PVB	4,63	3,04	2,10	1,51	1,11	0,83					
0.5	2x8	SGP	11,17	8,06	6,06	4,71	3,74	3,03					
0,5	010	PVB	8,02	5,41	3,85	2,85	2,17	1,69	1,34	1,08	0,88	0,72	0,60
	2x10	SGP	11,17	8,06	6,06	4,71	3,74	3,03	2,50	2,09	1,77	1,51	1,30
		PVB	3,78	2,33	1,34	0,61	0,15						
	2x8	SGP	10,47	7,46	5,54	4,24	3,32	2,65					
0,8		PVB	7,18	4,71	3,25	2,32	1,70	1,27	0,85	0,53	0,29	0,12	
	2x10	SGP	10,47	7,46	5,54	4,24	3,32	2,65	2,15	1,77	1,47	1,23	1,03
		PVB	3,22	1,42	0,37								
	2x8	SGP	10,00	7,06	5,19	3,93	3,04	2,39					
1.0	0.10	PVB	6,61	4,24	2,84	1,97	1,18	0,62	0,24				
1,0	2x10	SGP	10,00	7,06	5,19	3,93	3,04	2,40	1,92	1,55	1,27	1,04	0,81
	2x12	PVB	11,15	6,93	4,54	3,07	1,79	0,90	0,29				
		SGP	32,71	22,47	15,80	11,62	8,83	6,89	5,48	4,43	3,63	3,01	2,52
	0.10	PVB	5,21	2,58	0,89								
1,5	2x10	SGP	8,84	6,06	4,31	3,15	2,34	1,57	0,97	0,53	0,21		
1,5	2x12	PVB	8,74	6,21	4,14	2,83	1,61	0,80	0,24				
	ZXIZ	SGP	27,40	20,45	14,64	10,91	8,38	6,59	5,28	4,30	3,54	2,95	
2.0	010	PVB	7,38	4,98	2,29	0,70							
2,0	2x12	SGP	26,09	19,31	13,67	10,05	7,62	5,90	4,66	3,73	3,02	2,46	2,02
2.0	010	PVB	1,94										
3,0	2x12	SGP	23,48	17,03	11,71	8,34	6,09	4,53	3,00	1,84	0,99	0,36	
4.0	010	PVB											
4,0	2x12	SGP	20,86	14,75	9,75	6,14	3,25	1,33	0,03				

Ohne lastabtragende Handlaufanbindung möglich. Anstelle eines Handlaufs kann auch ein Glaskantenschutz verwendet werden. Max. Glasbreite: 6.000 mm.

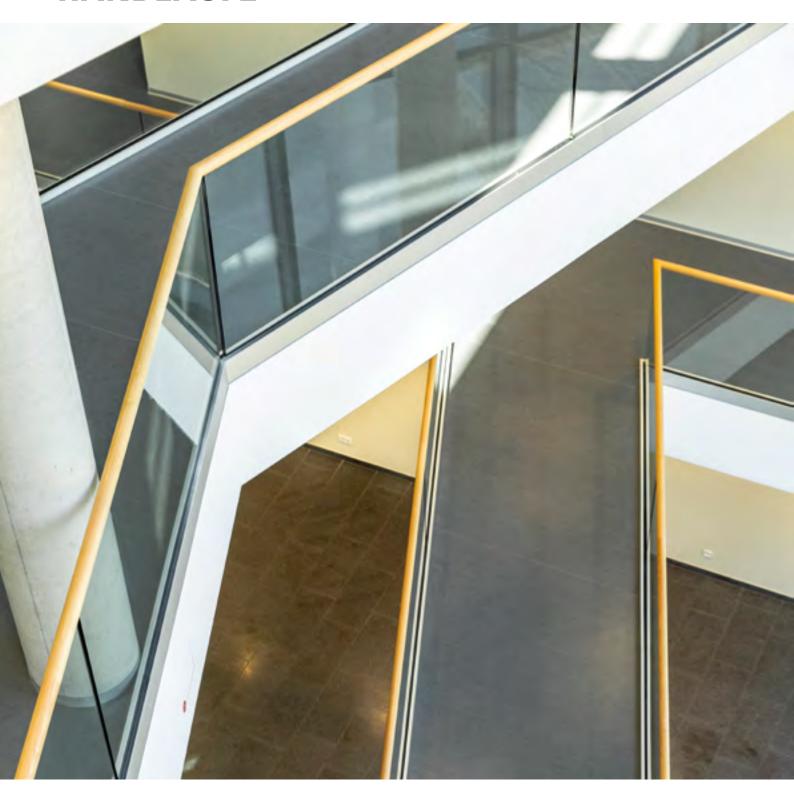
Lastverteilender Handlauf und Handlaufanbindung am Baukörper (tragende Bauteile) bei den Auslaufelementen erforderlich.

Das Breitenverhältnis der benachbarten Glasscheiben beträgt min. 1:4 und max. 4:1. Max. Glasbreite 3.000 mm, siehe Seite 75.

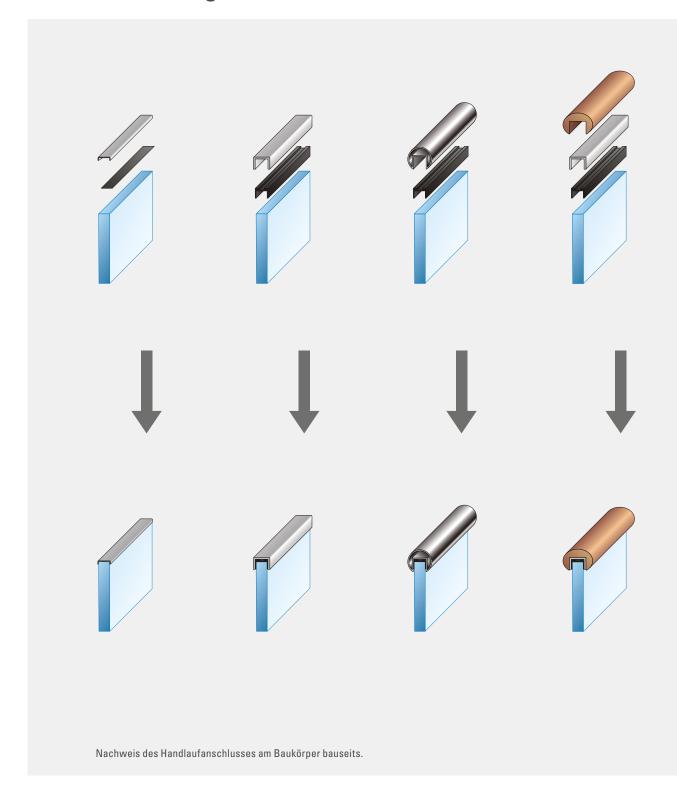
GLAS VSG-FLOAT - Anwendung Ebene

Holmlast [kN/m]		SG-Float nm]		max. Glashöhe [mm] bei zul. Windlast [kN/m²]													
			600	700	800	900	1.000	1.100	1.200	1.300	1.400	1.500	1.600				
		PVB	1,85	0,99	0,39	0,04											
	2x8	SGP	6,61	4,43	3,13	2,30	1,74	1,35									
0,5	210	PVB	3,68	2,38	1,62	1,13	0,79	0,47	0,25	0,09							
	2x10	SGP	11,08	7,56	5,44	4,08	3,15	2,49	2,00	1,64	1,36	1,14	0,96				
	0.0	PVB	0,07														
	2x8	SGP	5,79	3,75	2,55	1,79	1,28	0,78									
0,8	0.40	PVB	2,84	1,45	0,53												
	2x10	SGP	10,27	6,88	4,86	3,57	2,69	2,08	1,63	1,30	1,04	0,84	0,62				
		PVB															
	2x8	SGP	5,25	3,30	2,16	1,20	0,56	0,13									
	0.40	PVB	1,78	0,33													
1.0	2x10	SGP	9,73	6,43	4,47	3,23	2,39	1,80	1,38	0,97	0,63	0,38	0,19				
1,0	2,12	PVB	5,45	3,26	1,89	0,86	0,22										
	2x12	SGP	17,79	11,68	8,15	5,94	4,47	3,45	2,72	2,17	1,76	1,44	1,19				
	2x15	PVB	10,21	6,51	4,39	3,09	2,23	1,64	1,09	0,66	0,35	0,12					
	2.815	SGP	29,44	19,60	13,88	10,28	7,87	6,18	4,96	4,05	3,35	2,81	2,38				
	0.40	PVB	1,83	0,32													
1.5	2x12	SGP	12,99	9,47	6,56	4,71	3,47	2,61	1,98	1,32	0,84	0,47					
1,5	2x15	PVB	6,74	4,69	2,84	1,39	0,47										
	2815	SGP	22,51	16,72	11,90	8,81	6,71	5,24	4,16	3,36	2,74	2,26					
		PVB															
	2x12	SGP	11,68	8,33	5,58	3,85	2,34	1,24	0,49								
2,0	0.45	PVB	5,08	2,44	0,42												
	2x15	SGP	21,20	15,58	10,92	7,95	5,95	4,55	3,54	2,79	2,18	1,06	0,82				
		PVB															
3,0	2x15	SGP	18,59	13,30	8,96	6,23	4,10	2,35	1,14	0,28							

Ohne lastabtragende Handlaufanbindung möglich. Anstelle eines Handlaufs kann auch ein Glaskantenschutz verwendet werden. Max. Glasbreite: 6.000 mm.


Lastverteilender Handlauf und Handlaufanbindung am Baukörper (tragende Bauteile) bei den Auslaufelementen erforderlich.

Das Breitenverhältnis der benachbarten Glasscheiben beträgt min. 1:4 und max. 4:1. Max. Glasbreite 3.000 mm, siehe Seite 75.



HANDLÄUFE

Handlauf-Montage

71

BALARDO firstglass **Glaskantenschutz**

DIE VOLLENDUNG DER RAHMENLOSEN GLASARCHITEKTUR

Die auflaminierte glassklare Kante BALARDO *firstglass* definiert Transparenz bei Glasgeländern neu!

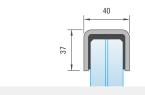
Ihr Vorteil: Keine sichtbaren Kantenschutzprofile aus Metall! Nur das pure Glas! Entdecken Sie neue Möglichkeiten in der rahmenlosen Glasarchitektur.

GL/-SS///7E BALARDO

Lastverteilende Edelstahl-Handläufe

Für VSG 2 x 6, 2 x 8, 2 x 10, 2 x 12 und 2 x 15 mm

U-Profil


 $U 30 \times 27 \text{ und } U 40 \times 37 \text{ mm}, t = 3 \text{ mm}$

inkl. Gummiaufsteckprofil Lieferlänge 3.000 mm

Material: Edelstahl 1.4301 und 1.4404 geschliffen

Oberfläche:

Material: Edelstahl 1.4301 Oberfläche: geschliffen

90° Ecke

Außenmaß 200 x 200 mm

vertikal

Endstück 500 mm (einseitig geschlossen)

Nutrohre

Ø 42,4 mm, Ø 48,3 mm, Ø 60,3 mm

inkl. Gummiaufsteckprofil

Lieferlänge 5.000 mm, 3.000 mm

Oberfläche: geschliffen

Edelstahl 1.4301

Handlaufabschluss-

Handlaufverbinder

Fckverbinder 90°

stopfen

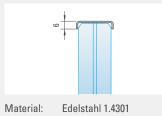
Wandanschluss Für Ø 42.4 mm und Ø 48.3 mm

Der Handlauf ist ggf. gegen Abheben durch Verklebung mit Dichtstoffen der Gruppe E nach DIN 18545-2 zu sichern. Verarbeitungs- und Klebevorschriften sind zu beachten. PVB-Verträglichkeit ist zu prüfen.

Max. Glasbreite bei Holmlast und Glasaufbau

Handlauf [mm]	Holmlast [kN/m]	Glasaufbau [mm]	Glasbreite [mm]
U 30 x 27 x 3	≤ 1,0	2 x 6 / 2 x 8 / 2 x 10	≤ 3.000
0 30 x 27 x 3	≤ 2,0	2 x 10	≤ 2.000
U 40 x 37 x 3	≤ 2,0	2 x 12 / 2 x 15	≤ 2.000
U 44 x 39 x 5*	≤ 2,0	2 x 12 / 2 x 15	≤ 3.000
U 50 x 40 x 6*	≤ 5,0	2 x 12 / 2 x 15	≤ 2.000
Ø 42,4	≤ 1,0	2 x 6 / 2 x 8 / 2 x 10	≤ 3.000
Ø 48,3	≤ 1,0	2 x 6 / 2 x 8 / 2 x 10	≤ 3.000
₩ 40,3	≤ 2,0	2 x 10	≤ 2.000
Ø 60,3	≤ 2,0	2 x 12 / 2 x 15	≤ 2.400

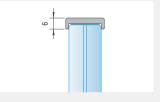
^{*} Handlauf auf Anfrage.


Glaskantenschutzprofile

Edelstahl

Für VSG 2 x 6, 2 x 8, 2 x 10, 2 x 12 und 2 x 15 mm

Lieferlänge 3.000 mm, 1.300 mm


Oberfläche: geschliffen

Aluminium

Für VSG 2 x 6, 2 x 8 und 2 x 10 mm

h = 6 mm, t = 1,5 mm Lieferlänge 3.000 mm, 1.300 mm

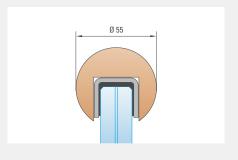
Material: Aluminium
(EN AW - 6063 T66)

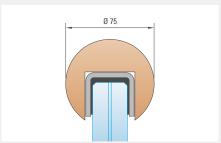
Oberfläche: Natur unbehandelt

Der Handlauf ist ggf. gegen Abheben durch Verklebung mit Dichtstoffen der Gruppe E nach DIN 18545-2 zu sichern. Verarbeitungs- und Klebevorschriften sind zu beachten. PVB-Verträglichkeit ist zu prüfen.

Lastverteilende Holz-Handläufe

Für VSG 2 x 6, 2 x 8, 2 x 10, 2 x 12 und 2 x 15 mm


Rund Ø 55 mm auf U-Profil 30 x 27 mm


für VSG 2 x 6 mm. 2 x 8 mm. 2 x 10 mm

Rund Ø 75 mm auf U-Profil 40 x 37 mm

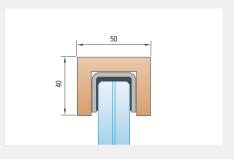
für VSG 2 x 12 mm, 2 x 15 mm

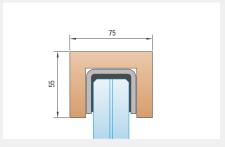
inklusive Gummiaufsteckprofil

Lieferlänge: 3.000 mm

Material Handläufe: Buche gedämpft

Oberfläche: geschliffen und lackiert


Rechteck b/h 50/40 mm auf U-Profil 30 x 27 mm

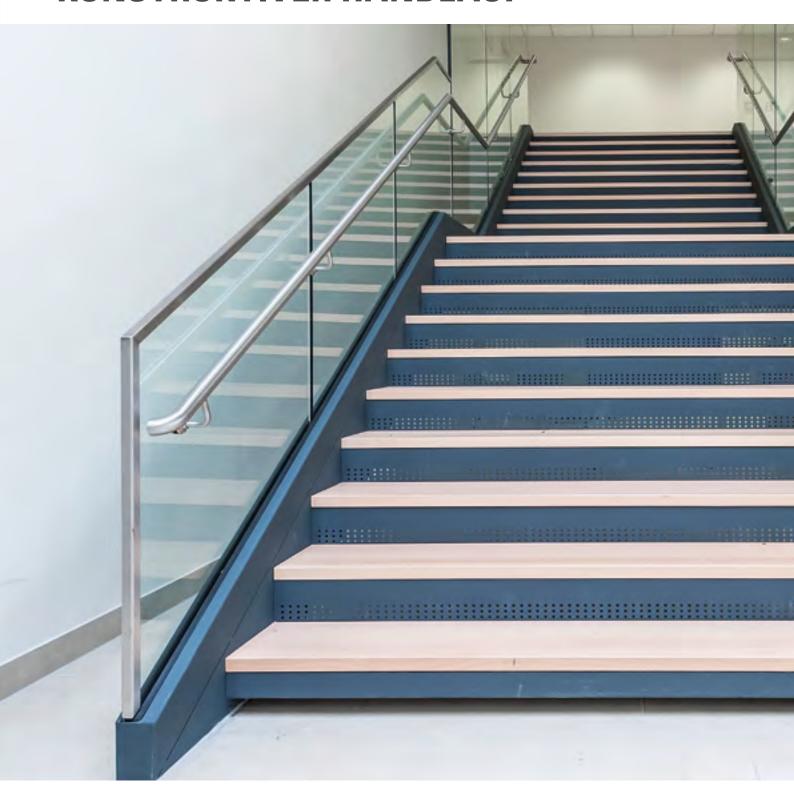

für VSG 2 x 6 mm, 2 x 8 mm, 2 x 10 mm

Rechteck b/h 75/55 mm auf U-Profil 40 x 37 mm

für VSG 2 x 12 mm, 2 x 15 mm

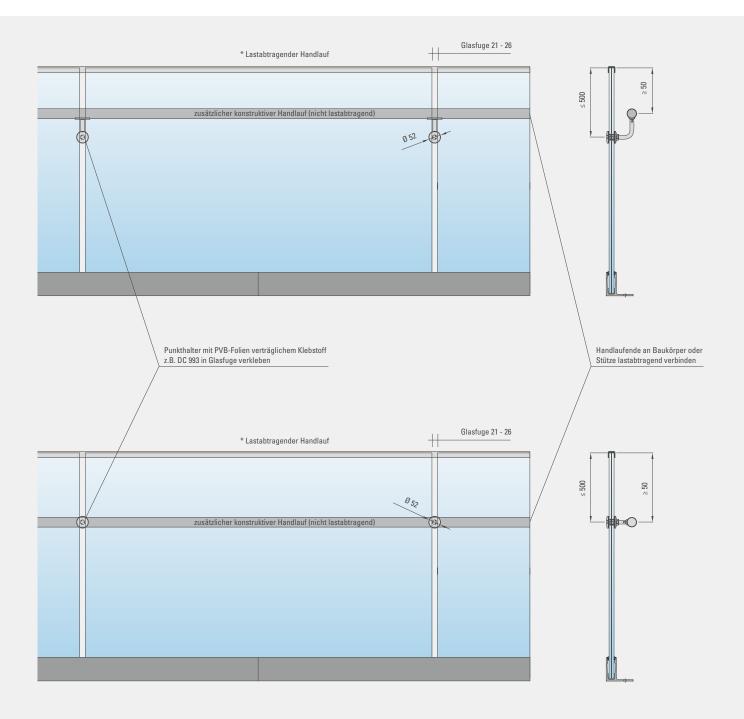
inklusive Gummiaufsteckprofil

Lieferlänge: 3.000 mm


Material Handläufe: Buche gedämpft

Oberfläche: geschliffen und lackiert

Der Handlauf ist ggf. gegen Abheben durch Verklebung mit Dichtstoffen der Gruppe E nach DIN 18545-2 zu sichern. Verarbeitungs- und Klebevorschriften sind zu beachten. PVB-Verträglichkeit ist zu prüfen.

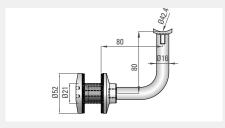

ZUSÄTZLICHER KONSTRUKTIVER HANDLAUF

Zusätzlicher konstruktiver Handlauf

Anwendungsbeispiele

^{*} Lastabtragender Handlauf zwingend erforderlich. Die baurechtliche Anwendung / Freigabe ist objektspezifisch mit den zuständigen Behörden abzustimmen. Der konstruktive Handlauf hat keine absturzsichernde Funktion und ist den Anforderungen entsprechend zu bemessen und auszuführen. Der Handlauf ist ggf. gegen Abheben durch Verklebung mit Dichtstoffen der Gruppe E nach DIN 18545-2 zu sichern. PVB-Verträglichkeit ist zu beachten.

GL/-SS///7E BALARDO


Handlaufhalter gebogen

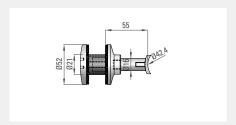
Punkthalter: Material:

Ø 52 mm

Edelstahl 1.4404

Oberfläche: drehblank

Handlaufhalter gerade



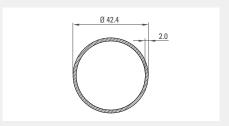
Punkthalter:

Ø 52 mm

Material:

Edelstahl 1.4404

Oberfläche:


drehblank

Edelstahl-Handlauf

Rundrohr: Material: Ø 42,4 x 2,0 mm

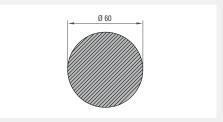
Edelstahl 1.4301

Oberfläche:

geschliffen

Lieferlänge: 6.000 mm

Holz-Handlauf



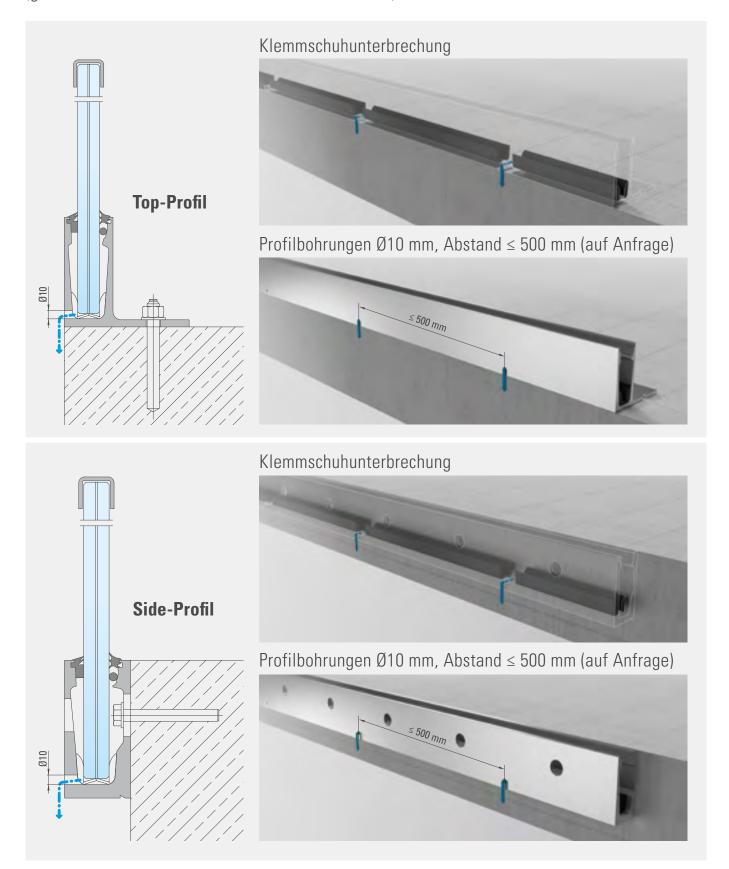
Holz:

Ø 60 mm

Material:

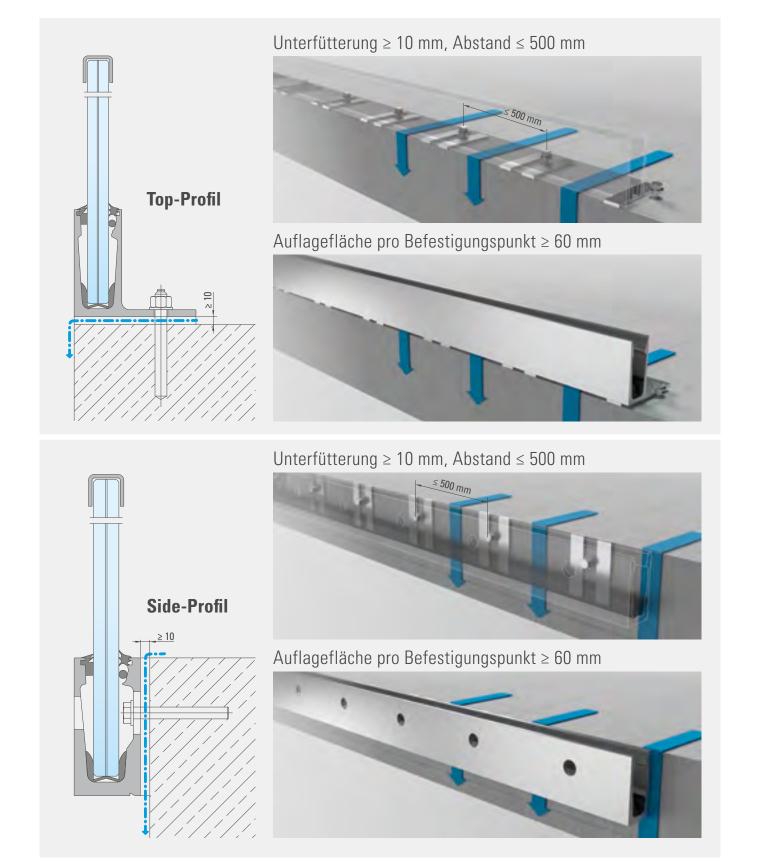
Buche gedämpft

Oberfläche: Lieferlänge: geschliffen und lackiert


3.000 mm

GL/-SS///7E

BALARDO


Glasfalzentwässerung

(gem. "Technische Richtlinie des Glaserhandwerks")

Balkon-/ Terrassenentwässerung

GL/-SS///7E BALARDO

Zubehör

Montagewerkzeug

Zum Einschlagen der POM Stäbe

Montagewerkzeug EASYFIX

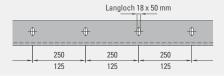
Abstandsmontageprofil

■ U 36 x 118 mm

■ Material: Aluminium (EN AW-6063 T66)

Lieferlänge: 3.000 mminklusive Distanzstücke (12 Stück)

■ Langloch: 18 x 50 mm


■ Bohrbild BALARDO core: alle 250 mm

■ Bohrbild BALARDO hybrid: alle 125 mm

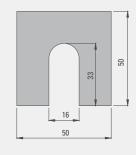
Oberflächen

Edelstahleffekt (E6EV1)

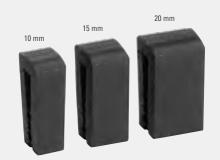
Rosette

■ für M10 Senkkopfschraube DIN 7991

■ Material: Edelstahl A4


■ Verpackungseinheit: 12 Stück

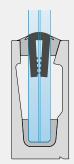
Futterbleche


Material: Aluminium
 Abmessung: 50 x 50 mm
 Langloch: 16 x 33 mm
 Dicken: 1 mm, 2 mm, 5 mm

■ Verpackungseinheit: 10 Stück

Zubehör

Glasabstandhalter für Glasfuge


Material: EPDM

• für Glasstärke: 2 x 6 mm, 2 x 8 mm, 2 x 10 mm, 2 x 12 mm, 2 x 15 mm

■ Glasfugenbreite: 10 mm, 15 mm, 20 mm

Höhe: 36 mmEinseitig selbstklebendVerpackungseinheit: 5 Stück

■ Max. Stablänge: 600 mm (zum Zuschneiden)

Schraubensicherung

■ Flasche 10 ml

■ Flasche 50 ml

Verbindungsstifte Ø4 x 20 mm für **BALARDO** *hybrid*-Profile und Anschlussprofile

Material: Edelstahl 1.4301

mit Gewinde M4 x 10 mmVerpackungseinheit: 10 Stück

Verbindungsbleche für Anschlussprofile

■ Material: Aluminium

mit Gewinde 2 x M5

Abmessung

(Länge x Stärke): 100 x 3 mm

■ Breite: 15 / 20 / 25 und 30 mm

■ Verpackungseinheit: 10 Stück

GL/-55///7E

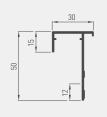
BALARDO

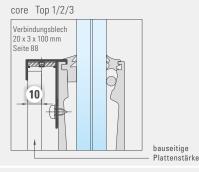
Anschlussprofile außen

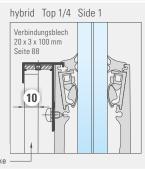
Material: Aluminium / Lieferlänge: 3.000 mm Oberflächen: Natur unbehandelt / Edelstahleffekt (E6EV1)

Abdeckprofil

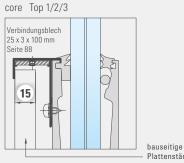
Abdeckprofil für core Side 1 / Top 4

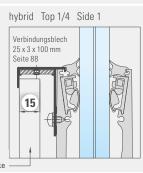




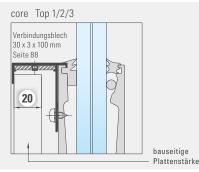


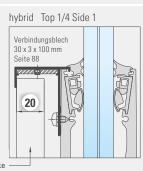
Plattenstärke 10 mm





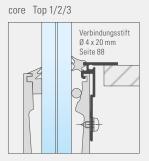
Plattenstärke **15** mm





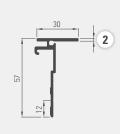
Plattenstärke 20 mm

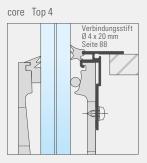
GL/-SS///7E BALARDO


Anschlussprofile innen

Material: Aluminium / Lieferlänge: 3.000 mm Oberflächen: Natur unbehandelt / Edelstahleffekt (E6EV1)

mit Schenkelhöhe 2 mm

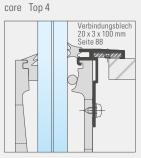




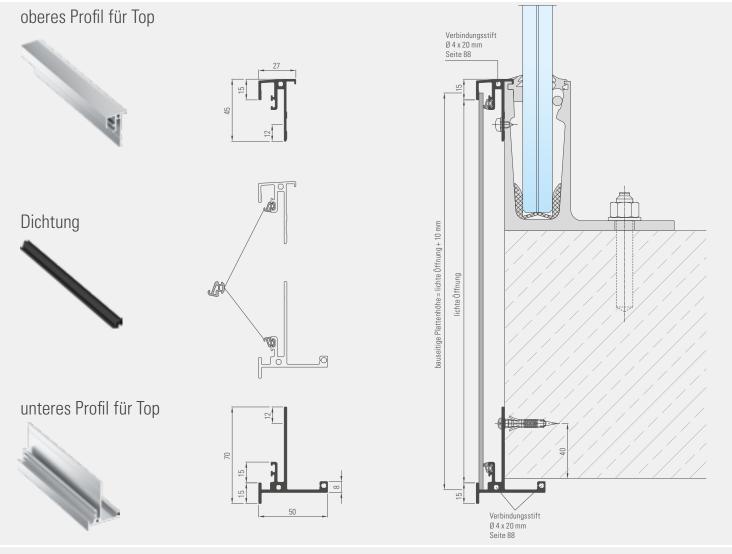
mit Schenkelhöhe **2** mm für core Top 4

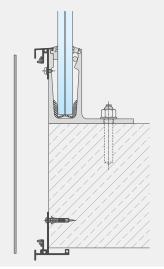
mit Schenkelhöhe 6 mm

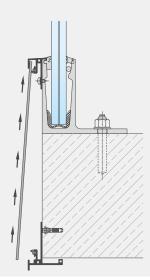


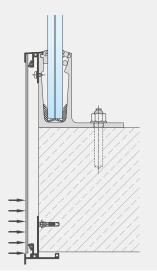


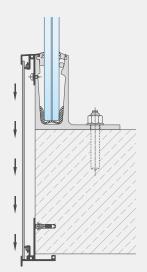
mit Schenkelhöhe **6** mm für core Top 4



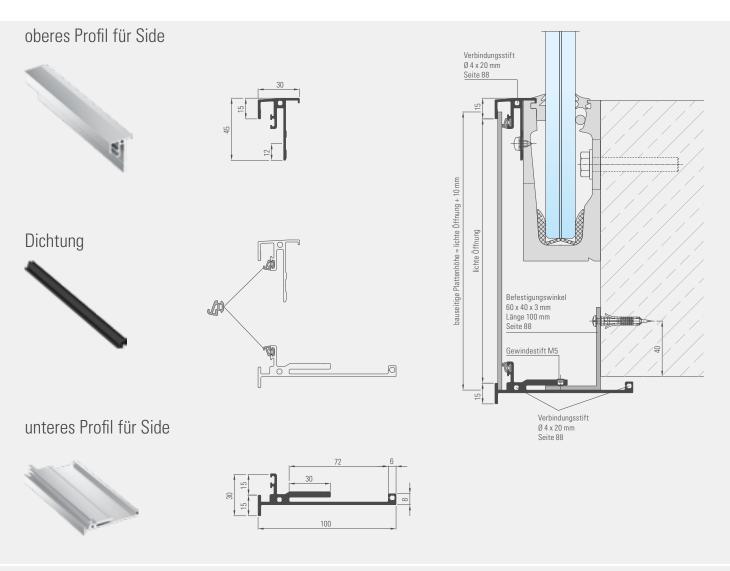


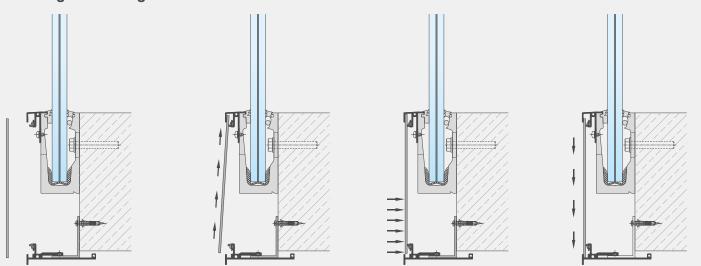

Baukörperverkleidung Top-Profile für Plattenstärke 3-5 mm


Material: Aluminium / Lieferlänge: 3.000 mm Oberflächen: Natur unbehandelt / Edelstahleffekt (E6EV1)



Montageanleitung





Baukörperverkleidung Side-Profile für Plattenstärke 3-5 mm

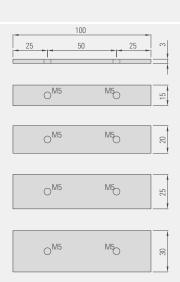
Material: Aluminium / Lieferlänge: 3.000 mm Oberflächen: Natur unbehandelt / Edelstahleffekt (E6EV1)

Montageanleitung

Verbindungselemente

Verbindungsstift

Material: Edelstahl 1.4301 Länge: 20 mm, Ø4 mm

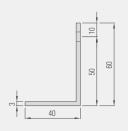


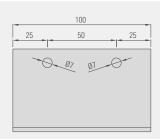
Verbindungsbleche

Material: Aluminium Länge: 100 mm Stärke: 3 mm

Breite: 15, 20, 25 und 30 mm

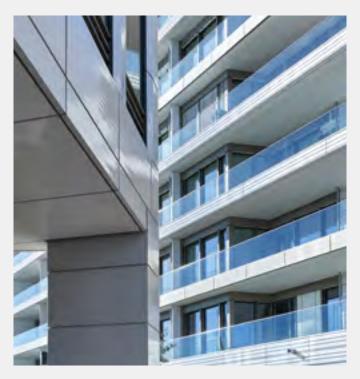
Befestigungswinkel


Material: Aluminium Länge: 100 mm Stärke: 3 mm Schenkel: 60 x 40 mm



 $Be festigungs winkel\ im\ Profilbereich$

Befestigungswinkel und Verbindungsstifte im Stoßbereich

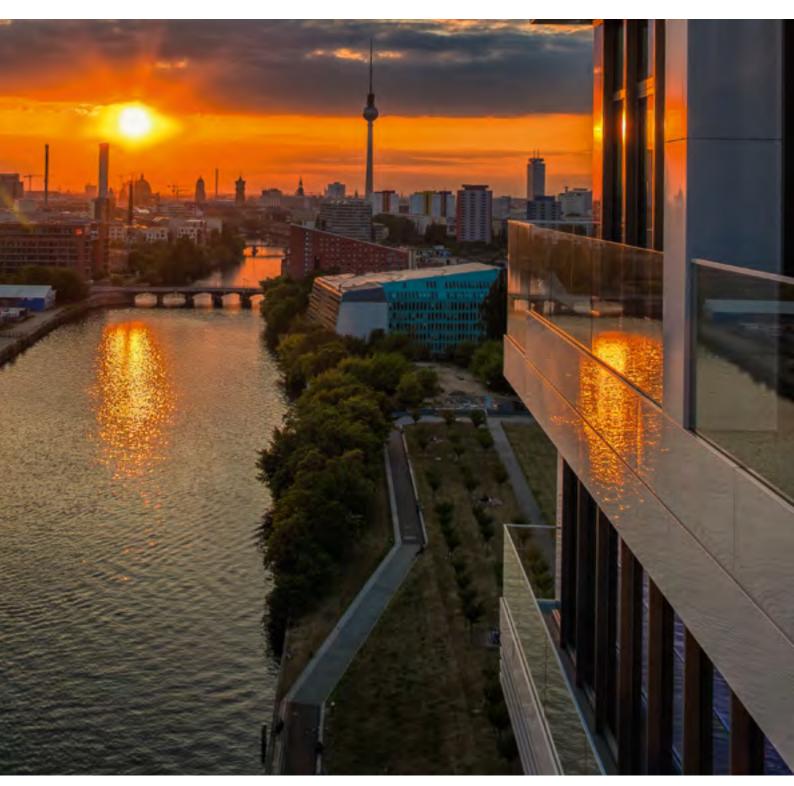

IQ GEBÄUDEENSEMBLE

IN DER HAMBURGER HAFENCITY

Unsere BALARDO Glasgeländer im neuen IQ Gebäude in der Hamburger Hafencity. IQ bedeutet "Intelligent Quarters" und das Gebäudeensemble befindet sich direkt an der Elbe und entlang des südöstlichen Magdeburger Hafens – in unmittelbarer Nachbarschaft zur HCU, der Deutschlandzentrale von Greenpeace e.V., dem designport hamburg und weiteren kreativen Nutzungen.

Die Hamburger ECE plante auf einem ca. 9.100 qm großen Grundstück im südlichen Elbtorquartier mit einem rund 70 Meter hohen Bürohaus am Wasser eine weithin sichtbare Landmarke, die von zwei weiteren Gebäuden – u. a. mit rund 60 Wohnungen und öffentlichkeitswirksamen Nutzungen im Erdgeschoss – ergänzt wird.

Ein sich zum Wasser hin öffnender gemeinsamer Platz mit der HCU bietet eine hohe Verweilqualität und unterstreicht den architektonischen Anspruch dieses besonderen Ortes. Insgesamt umfassen die "Intelligent Quarters" rund 30.000 qm Bruttogeschossfläche. Zusammen mit dem gegenüberliegenden Überseequartier und der Bebauung an der Kaispitze des südlichen Baakenhafens werden die "Intelligent Quarters" und die HCU das "Maritime Dreieck" bilden. Die Gebäude wurden nach dem Nachhaltigkeitsstandard der HafenCity in Gold geplant und erfüllen zusätzlich die Anforderungen an ein Zertifikat der Deutschen Gesellschaft für Nachhaltiges Bauen (DGNB).

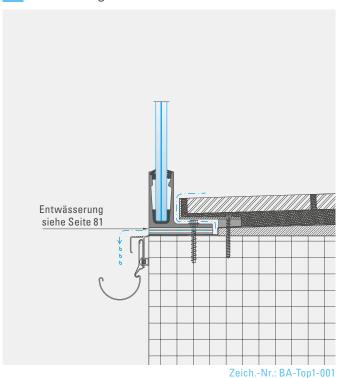


ANWENDUNGSBEISPIELE

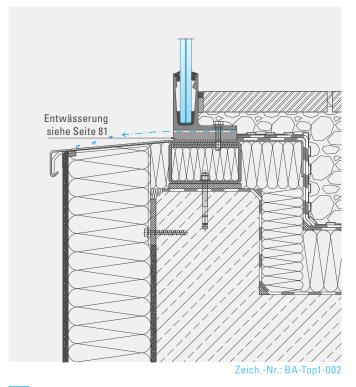
OUTSIDE / AUSSENBEREICH

ÜBERSICHT

		Top 1		Top 2		Тор 3		Top 4	
Anwendung		ZeichNr.	Seite	ZeichNr.	Seite	ZeichNr.	Seite	ZeichNr.	Seite
1	Anbindung von oben an Balkon	BA-Top1-001	92	BA-Top2-001	95	BA-Top3-001	98	BA-Top4-001	101
2	Anbindung von oben bei Dachterrasse	BA-Top1-002	92	BA-Top2-002	95	BA-Top3-002	98	BA-Top4-002	101
3	Anbindung von oben mit hohem Fußboden	BA-Top1-003	92	BA-Top2-003	95	BA-Top3-003	98	BA-Top4-003	101
4	Anbindung von oben an Attika	BA-Top1-004	92	BA-Top2-004	95	BA-Top3-004	98	BA-Top4-004	101
5	Anbindung seitlich an Balkon	BA-Top1-005	93	BA-Top2-005	96	BA-Top3-005	99	BA-Top4-005	102
6	Anbindung seitlich mit auskragender UK	BA-Top1-006	93	BA-Top2-006	96	BA-Top3-006	99	BA-Top4-006	102
7	Anbindung seitlich mit hohem Fußboden	BA-Top1-007	93	BA-Top2-007	96	BA-Top3-007	99	BA-Top4-007	102
8	Anbindung seitlich bei Dachterrasse	BA-Top1-008	93	BA-Top2-008	96	BA-Top3-008	99	BA-Top4-008	102
9	Anbindung von oben mit FIX*N SLIDE an Attika	BA-Top1-009	94	BA-Top2-009	97	BA-Top3-009	100	BA-Top4-009	103
10	Anbindung seitlich mit FIX*N SLIDE an Dachterrasse	BA-Top1-010	94	BA-Top2-010	97	BA-Top3-010	100	BA-Top4-010	103
11	Anbindung von oben mit FIX*N SLIDE an Dachterrasse	BA-Top1-011	94	BA-Top2-011	97	BA-Top3-011	100	BA-Top4-011	103

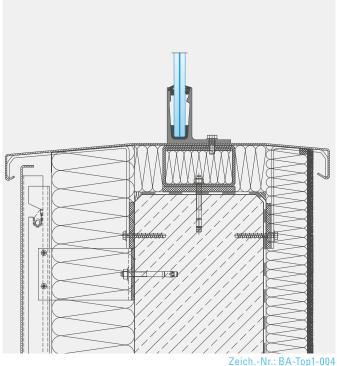

		Side 1		Side 2	
Anwendung		ZeichNr.	Seite	ZeichNr.	Seite
1	Anbindung von oben an Balkon	BA-Side1-001	104	BA-Side2-001	107
2	Anbindung von oben bei Dachterrasse	BA-Side1-002	104	BA-Side2-002	107
3	Anbindung von oben mit hohem Fußboden	BA-Side1-003	104	BA-Side2-003	107
4	Anbindung von oben an Attika	BA-Side1-004	104	BA-Side2-004	107
5	Anbindung seitlich an Balkon	BA-Side1-005	105	BA-Side2-005	108
6	Anbindung seitlich mit auskragender UK	BA-Side1-006	105	BA-Side2-006	108
7	Anbindung seitlich mit hohem Fußboden	BA-Side1-007	105	BA-Side2-007	108
8	Anbindung seitlich bei Dachterrasse	BA-Side1-008	105	BA-Side2-008	108
9	Anbindung mit Abstandmontageprofil an Betonkonstruktion	BA-Side1-009	106	BA-Side2-009	109
10	Anbindung mit Abstandmontageprofil an Stahlkonstruktion	BA-Side1-010	106	BA-Side2-010	109
11	Anbindung von oben mit FIX®N SLIDE an Attika	BA-Side1-013	106	BA-Side2-013	109
12	Anbindung seitlich mit FIX N SLIDE an Dachterrasse	BA-Side1-014	106	BA-Side2-014	109

Systemprofil Top 1 Outside

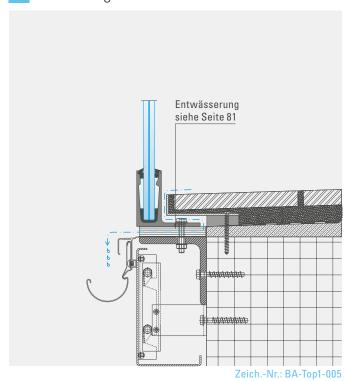

Anwendungsbeispiele Außenbereich BALARDO core / core hd / hybrid

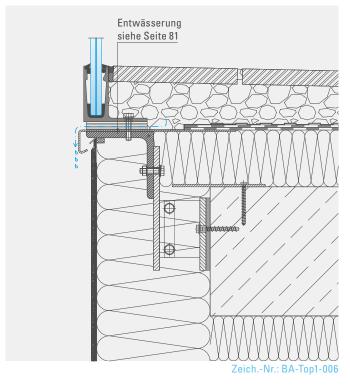
Anbindung von oben an Balkon

GL/-SS///7E

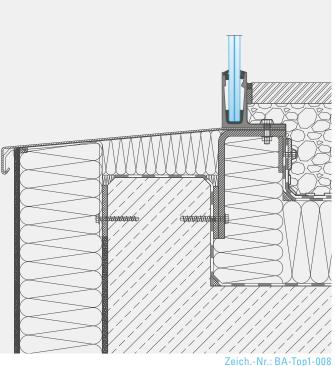


Anbindung von oben bei Dachterrasse

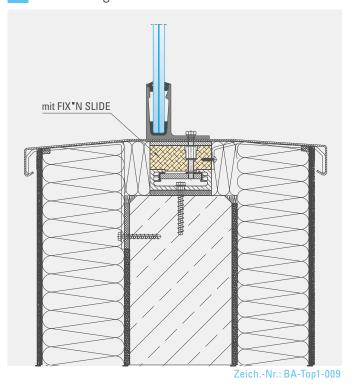

Anbindung von oben mit hohem Fußboden



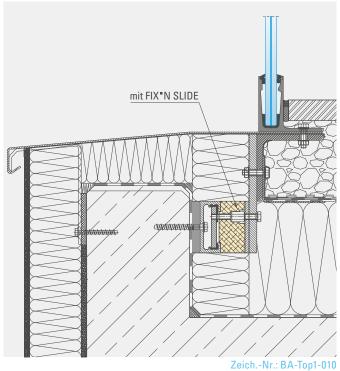
5 Anbindung seitlich an Balkon


Anbindung seitlich mit auskragender UK

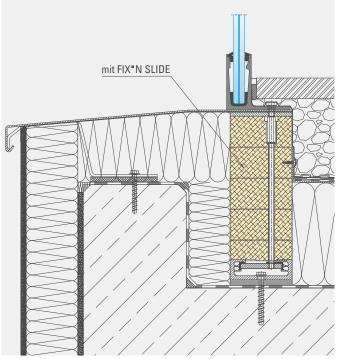
Anbindung seitlich mit hohem Fußboden



Anbindung seitlich bei Dachterrasse

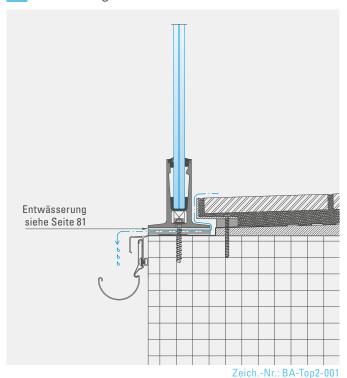


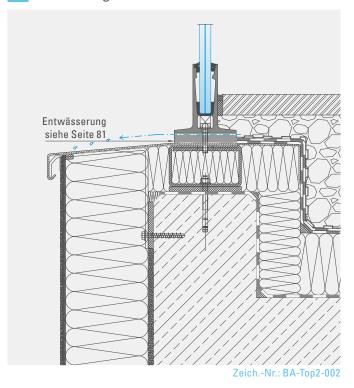
9 Anbindung von oben an Attika


GL/-SS///7E

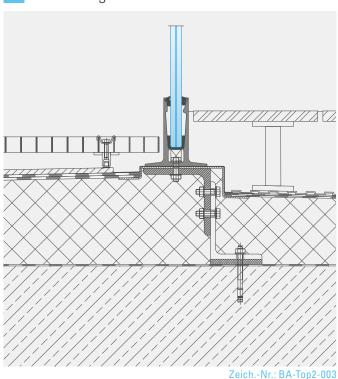
10 Anbindung seitlich an Dachterrasse

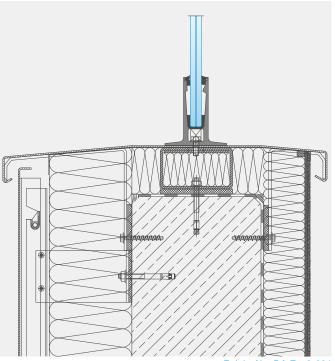
11 Anbindung von oben an Dachterrasse


Zeich.-Nr.: BA-Top1-011

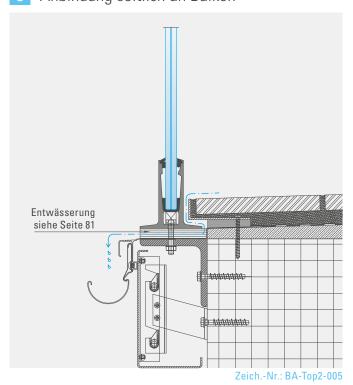

Systemprofil Top 2 Outside

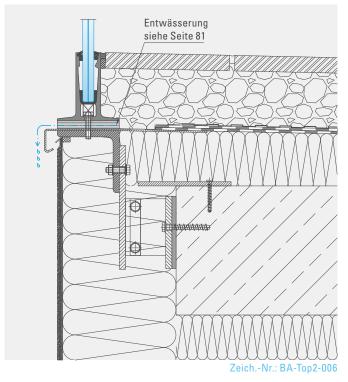
Anwendungsbeispiele Außenbereich BALARDO core / core hd


1 Anbindung von oben an Balkon

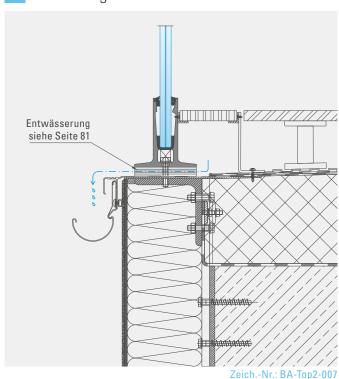


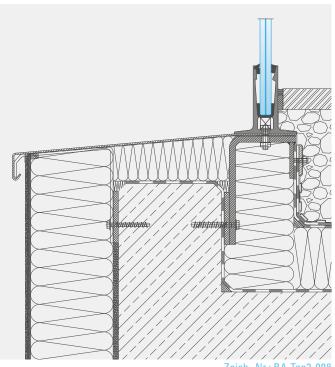
2 Anbindung von oben bei Dachterrasse

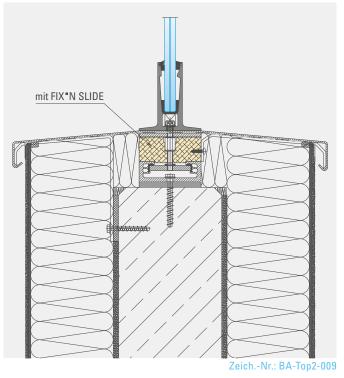

3 Anbindung von oben mit hohem Fußboden

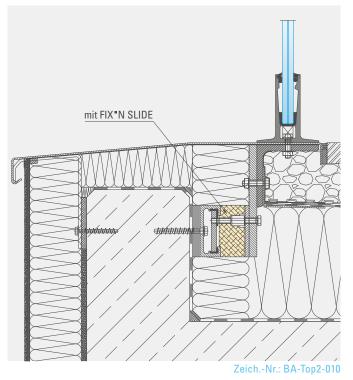


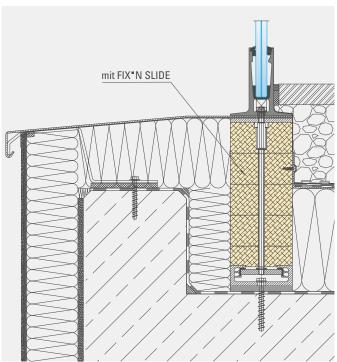
Anbindung seitlich an Balkon


GL/-SS///7E


Anbindung seitlich mit auskragender UK

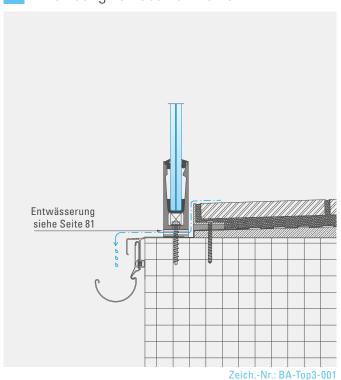

Anbindung seitlich mit hohem Fußboden


Anbindung seitlich bei Dachterrasse

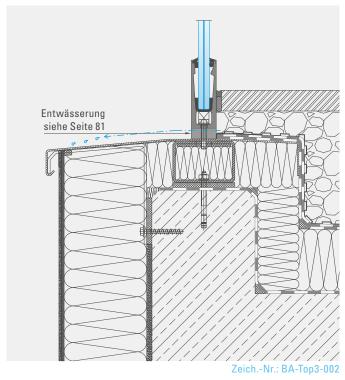


10 Anbindung seitlich an Dachterrasse

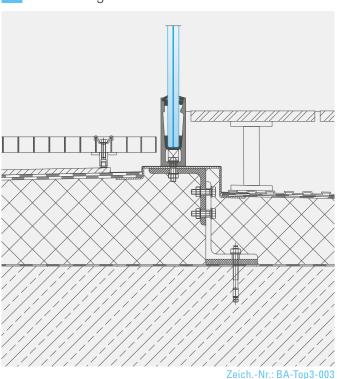
11 Anbindung von oben an Dachterrasse

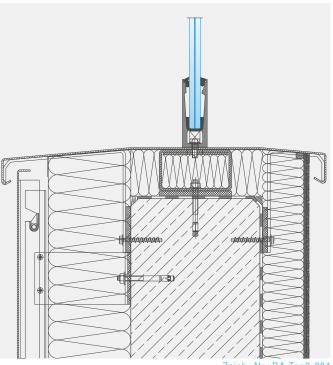

Zeich.-Nr.: BA-Top2-011

Systemprofil Top 3 Outside

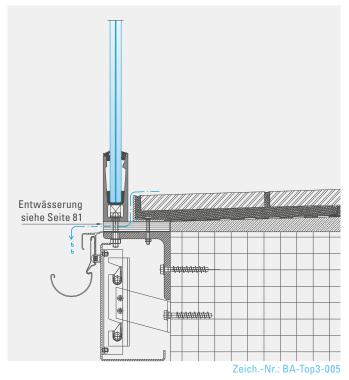

Anwendungsbeispiele Außenbereich BALARDO core

1 Anbindung von oben an Balkon

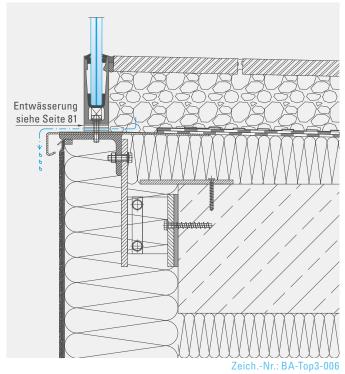

GL/-SS///7E


2 Anbindung von oben bei Dachterrasse

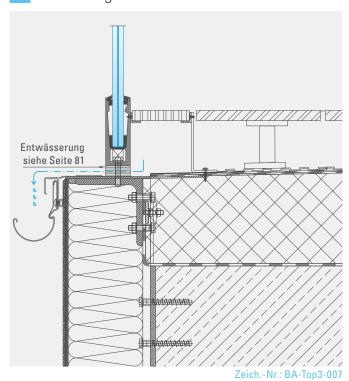
3 Anbindung von oben mit hohem Fußboden

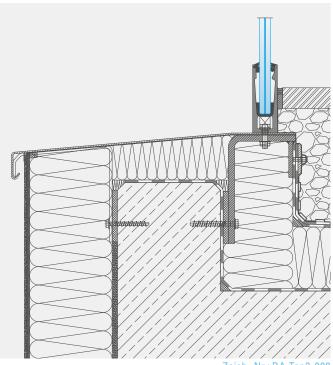


4 Anbindung von oben an Attika

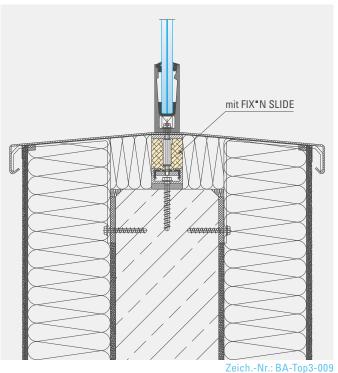


Zeich.-Nr.: BA-Top3-004

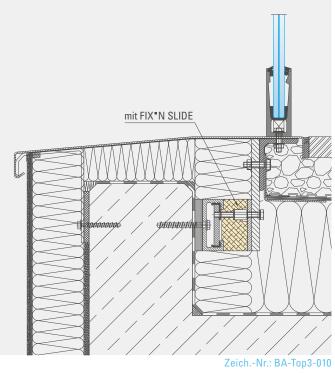


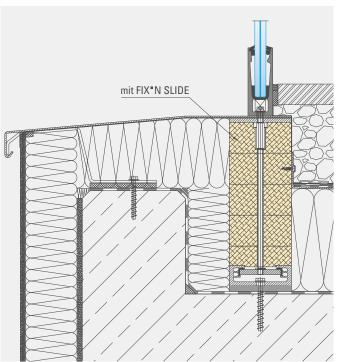

6 Anbindung seitlich mit auskragender UK

7 Anbindung seitlich mit hohem Fußboden

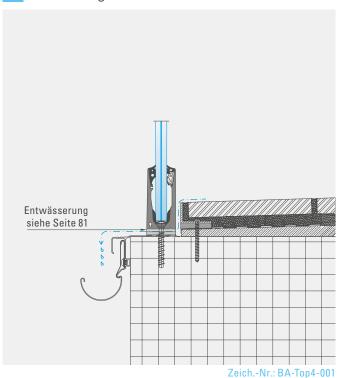


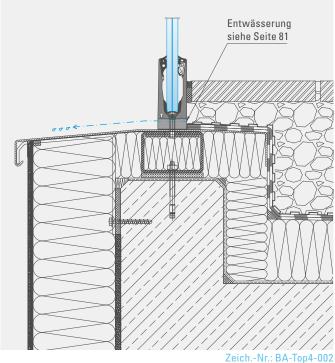
8 Anbindung seitlich bei Dachterrasse


9 Anbindung von oben an Attika

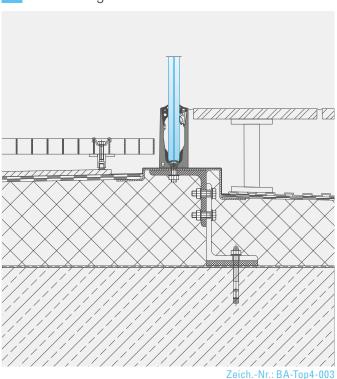

GL/-SS///7E

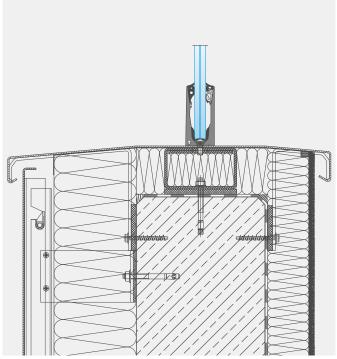
Zeich.-Nr.: B/
11 Anbindung von oben an Dachterrasse


Zeich.-Nr.: BA-Top3-011

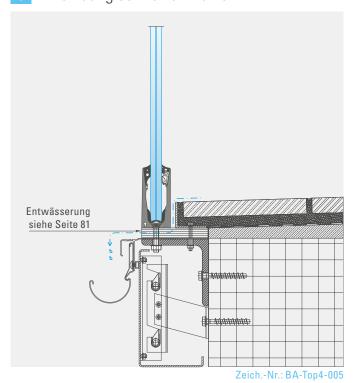

Systemprofil Top 4 Outside

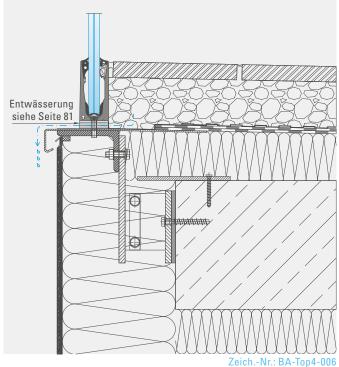
Anwendungsbeispiele Außenbereich BALARDO core / hybrid

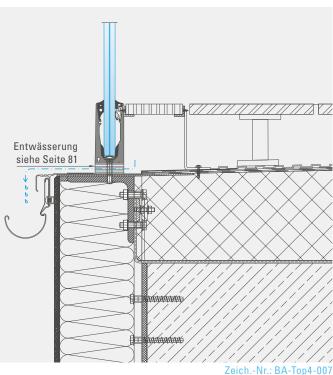

1 Anbindung von oben an Balkon

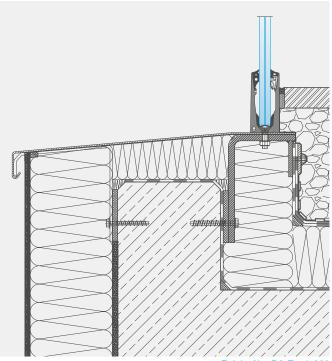


2 Anbindung von oben bei Dachterrasse

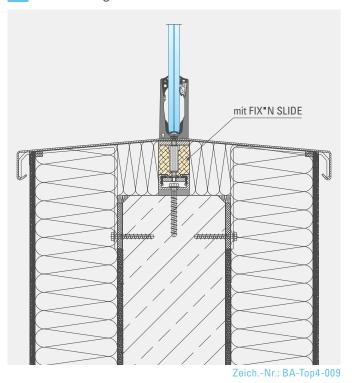

3 Anbindung von oben mit hohem Fußboden



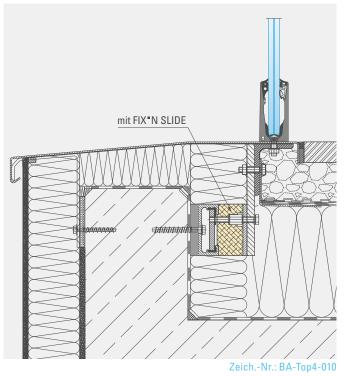

GL/-SS///7E


Anbindung seitlich mit auskragender UK

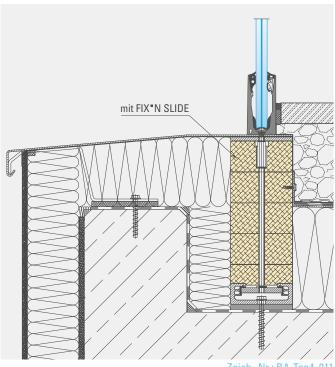
Anbindung seitlich mit hohem Fußboden



Anbindung seitlich bei Dachterrasse

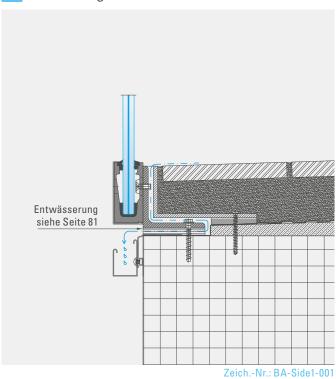


Zeich.-Nr.: BA-Top4-008

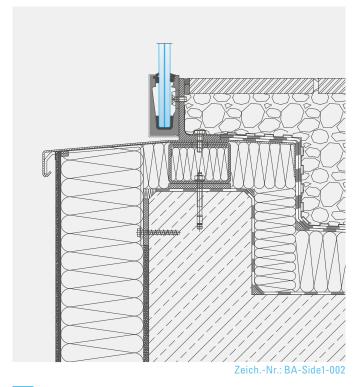


10 Anbindung seitlich an Dachterrasse

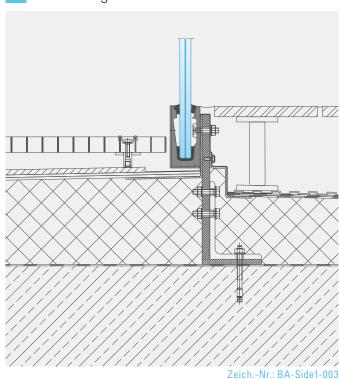
11 Anbindung von oben an Dachterrasse

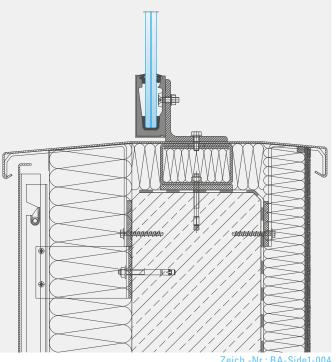

Zeich.-Nr.: BA-Top4-011

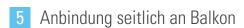
Systemprofil Side 1 Outside

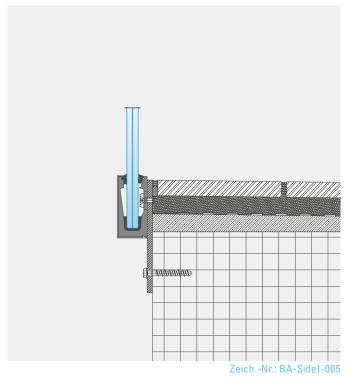

Anwendungsbeispiele Außenbereich **BALARDO** core / core hd / hybrid

Anbindung von oben an Balkon

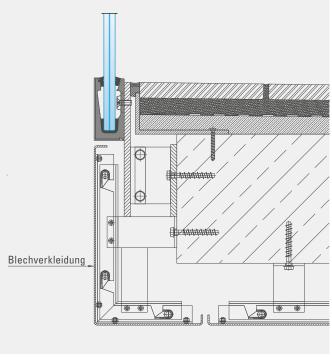

GL/-SS///7E

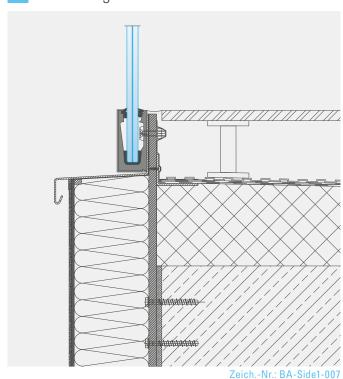



Anbindung von oben bei Dachterrasse

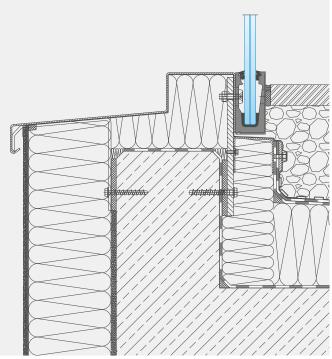


Anbindung von oben mit hohem Fußboden



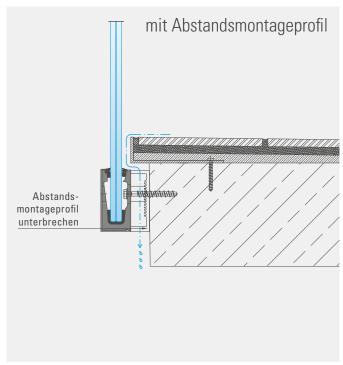


6 Anbindung seitlich mit auskragender UK

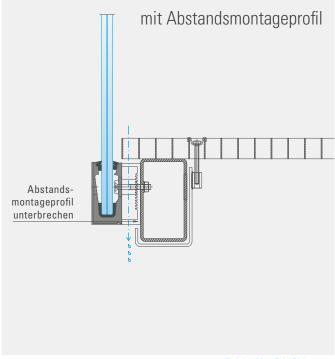


Zeich.-Nr.: BA-Side1-006

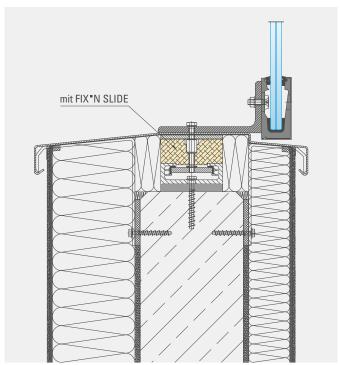
7 Anbindung seitlich mit hohem Fußboden


8 Anbindung seitlich bei Dachterrasse

Zeich.-Nr.: BA-Side1-008

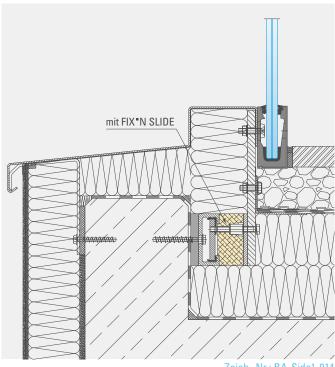

9 Anbindung an Betonkonstruktion

GL/-SS///7E



Zeich.-Nr.: BA-Side1-009

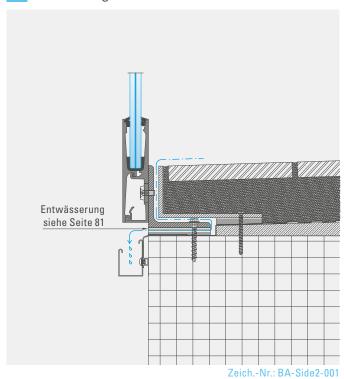
Anbindung an Stahlkonstruktion



Zeich.-Nr.: BA-Side1-010

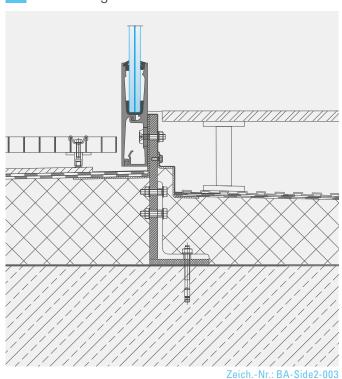
Zeich.-Nr.: BA-Side1-013

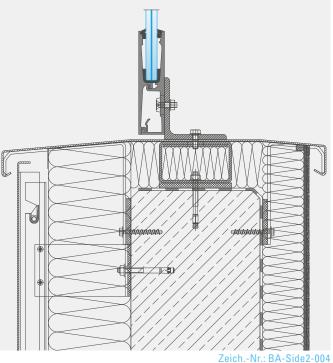
Anbindung seitlich an Dachterrasse


Zeich.-Nr.: BA-Side1-014

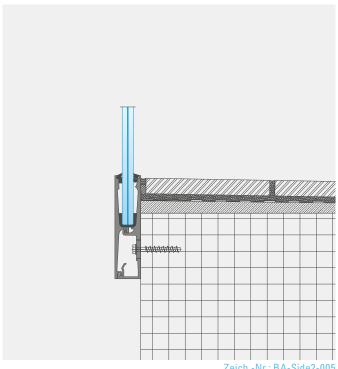

Systemprofil Side 2 Outside

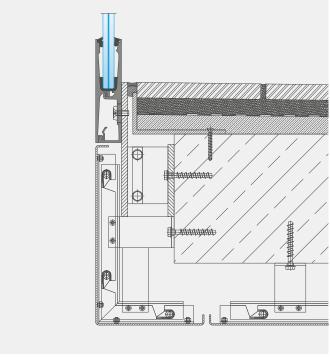
Anwendungsbeispiele Außenbereich BALARDO core


Anbindung von oben an Balkon

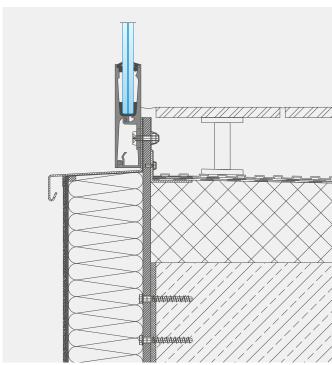


Anbindung von oben bei Dachterrasse

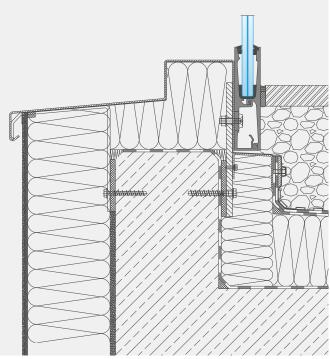

Anbindung von oben mit hohem Fußboden



GL/-55///7E

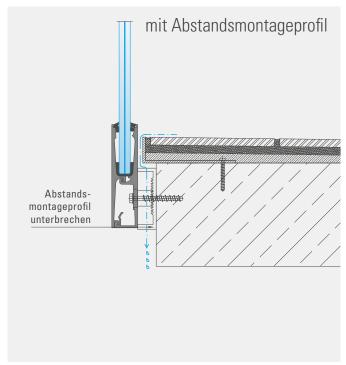

Zeich.-Nr.: BA-Sidez-C

6 Anbindung seitlich mit auskragender UK

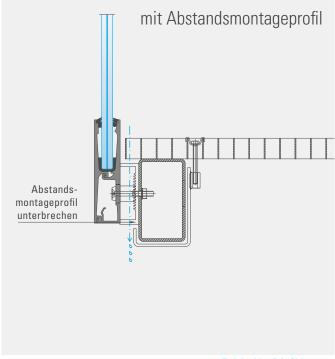

Zeich.-Nr.: BA-Side2-006

7 Anbindung seitlich mit hohem Fußboden

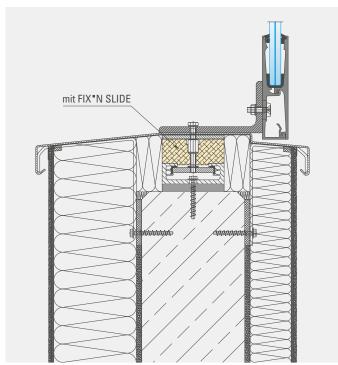
Zeich.-Nr.: BA-Side2-007


8 Anbindung seitlich bei Dachterrasse

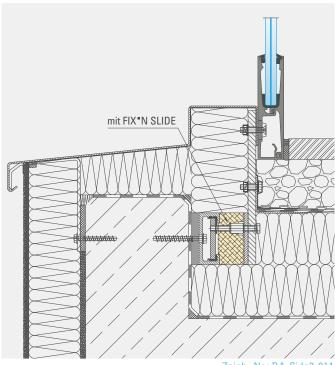
Zeich.-Nr.: BA-Side2-008



9 Anbindung an Betonkonstruktion


Zeich.-Nr.: BA-Side2-009

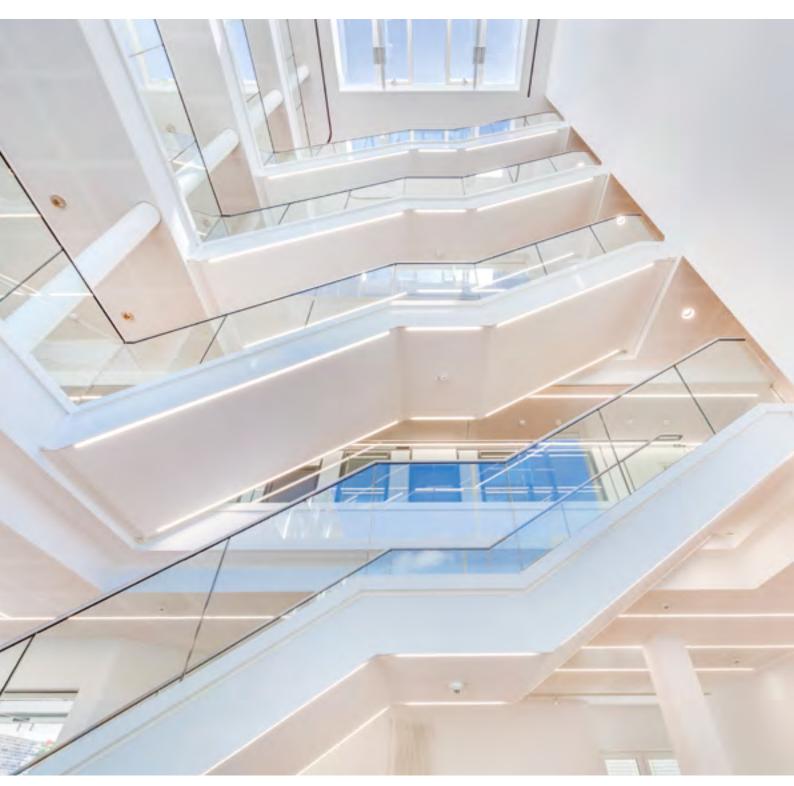
10 Anbindung an Stahlkonstruktion


Zeich.-Nr.: BA-Side2-010

11 Anbindung von oben an Attika

Zeich.-Nr.: BA-Side2-013

12 Anbindung seitlich an Dachterrasse



Zeich.-Nr.: BA-Side2-014

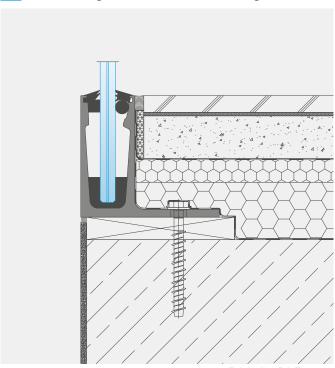
ANWENDUNGSBEISPIELE

INSIDE / INNENBEREICH

ÜBERSICHT

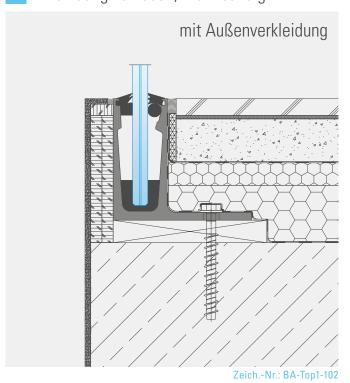
		Top 1		Top 2		Top 3		Top 4	
	Anwendung	ZeichNr.	Seite	ZeichNr.	Seite	ZeichNr.	Seite	ZeichNr.	Seite
1	Anbindung von oben, Profil bündig	BA-Top1-101	112	BA-Top2-101	113	BA-Top3-101	114	BA-Top4-101	115
2	Anbindung von oben, Profil bündig mit Außenverkleidung	BA-Top1-102	112	BA-Top2-102	113	BA-Top3-102	114	BA-Top4-102	115
3	Anbindung von oben, Profil überstehend mit Stahl-UK	BA-Top1-103	112	BA-Top2-103	113	BA-Top3-103	114	BA-Top4-103	115
4	Anbindung von oben, Profil überstehend mit FIX N SLIDE und Außenverkleidung	BA-Top1-104	112	BA-Top2-104	113	BA-Top3-104	114	BA-Top4-104	115

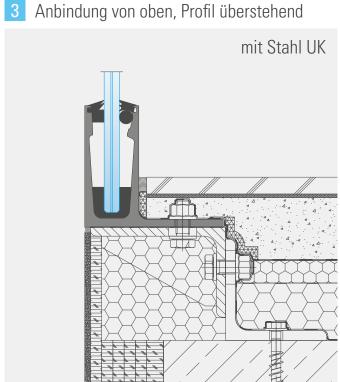
		Side 1	
	Anwendung	ZeichNr.	Seite
1	Anbindung seitlich, Profil bündig	BA-Side1-101	116
2	Anbindung von oben, Profil bündig mit Außenverkleidung	BA-Side1-102	116
3	Anbindung seitlich, Treppenwange	BA-Side1-103	116
4	Anbindung von oben, Profil bündig mit FIX*N SLIDE und Außenverkleidung	BA-Side1-104	116


		Side 2 + Si	de 3
	Anwendung	ZeichNr.	Seite
1	Anbindung seitlich, Profil überstehend	BA-Side2-101	117
2	Anbindung von oben, Profil überstehend mit Außenverkleidung	BA-Side2-102	117
3	Anbindung seitlich, Treppenwange	BA-Side2-103	117
4	Anbindung von oben, Profil überstehend mit FIX*N SLIDE und Außenverkleidung	BA-Side2-104	117

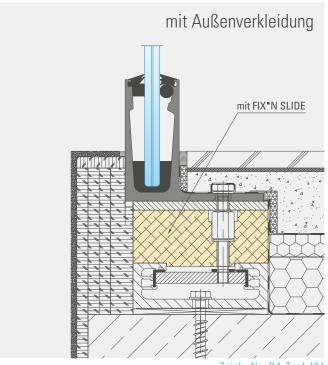
Systemprofil Top 1 Inside

GL/-SS///7E


Anwendungsbeispiele Innenbereich **BALARDO** core / core hd / hybrid / smart



Zeich.-Nr.: BA-Top1-101


2 Anbindung von oben, Profil bündig

4 Anbindung von oben, Profil überstehend

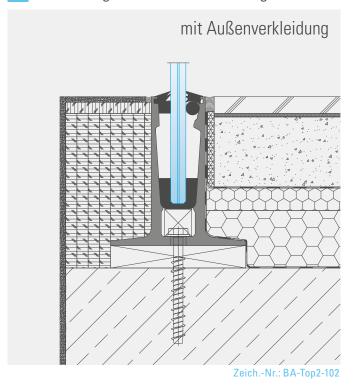
Zeich.-Nr.: BA-Top1-103


Zeich.-Nr.: BA-Top1-104

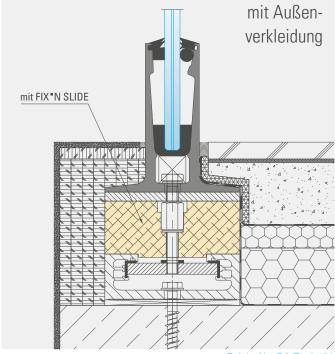
Systemprofil Top 2 Inside

Anwendungsbeispiele Innenbereich BALARDO core / core hd

1 Anbindung von oben, Profil bündig


Zeich.-Nr.: BA-Top2-101

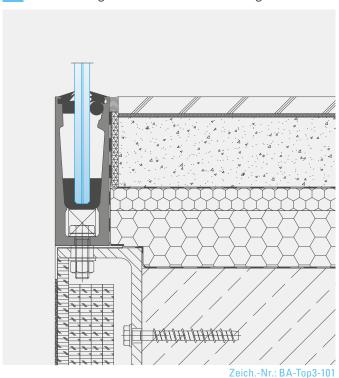
3 Anbindung von oben, Profil überstehend



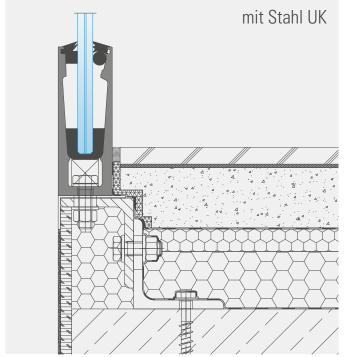
Zeich.-Nr.: BA-Top2-103

2 Anbindung von oben, Profil bündig

4 Anbindung von oben, Profil überstehend

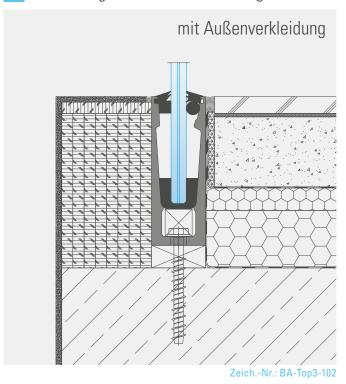

Zeich.-Nr.: BA-Top2-104

GL/-SS///7E BALARDO

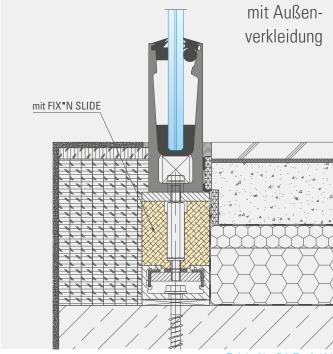

Systemprofil Top 3 Inside

Anwendungsbeispiele Innenbereich BALARDO core

1 Anbindung von oben, Profil bündig



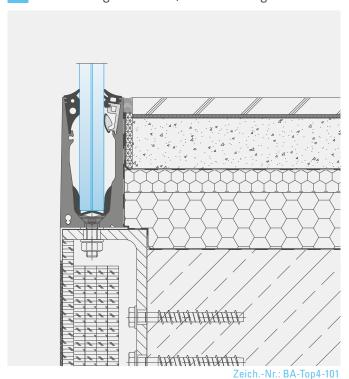
3 Anbindung von oben, Profil überstehend

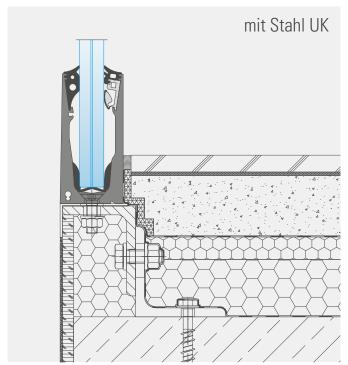


Zeich.-Nr.: BA-Top3-103

2 Anbindung von oben, Profil bündig

4 Anbindung von oben, Profil überstehend

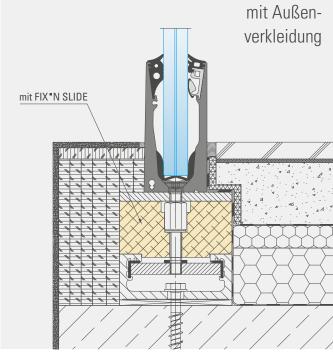

Zeich.-Nr.: BA-Top3-104


Systemprofil Top 4 Inside

Anwendungsbeispiele Innenbereich BALARDO core / hybrid

1 Anbindung von oben, Profil bündig

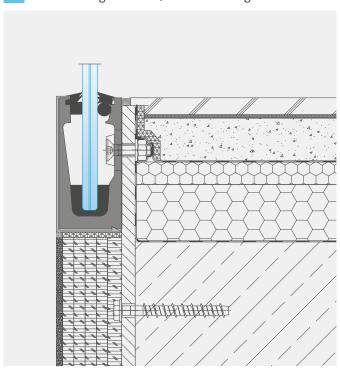
3 Anbindung von oben, Profil überstehend



Zeich.-Nr.: BA-Top4-103

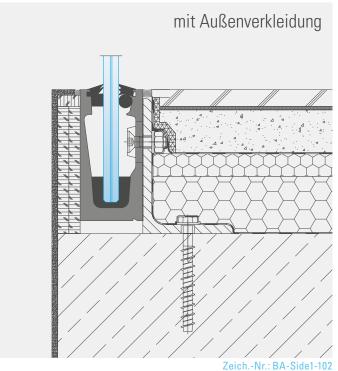
2 Anbindung von oben, Profil bündig

4 Anbindung von oben, Profil überstehend

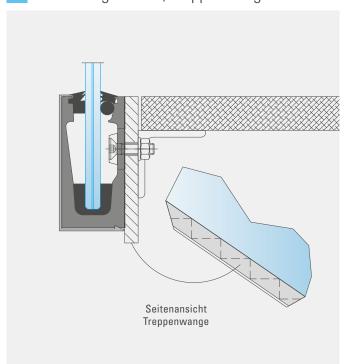

Zeich.-Nr.: BA-Top4-104

Systemprofil Side 1 Inside

GL/-SS///7E


Anwendungsbeispiele Innenbereich BALARDO core / core hd / hybrid

1 Anbindung seitlich, Profil bündig


Zeich.-Nr.: BA-Side1-101

2 Anbindung von oben, Profil bündig

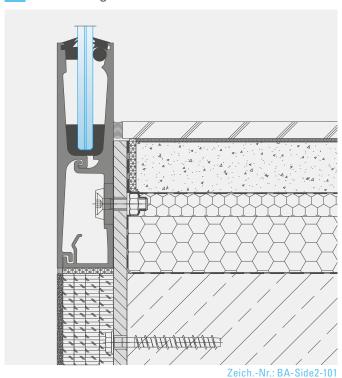
Anbindung von oben, Profil bündig

3 Anbindung seitlich, Treppenwange

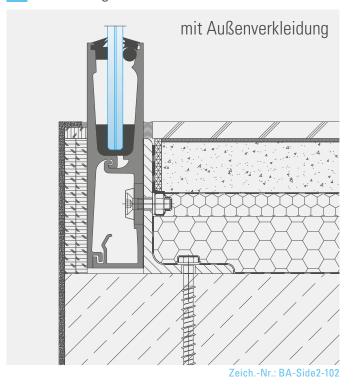
Zeich.-Nr.: BA-Side1-103

mit Außenverkleidung

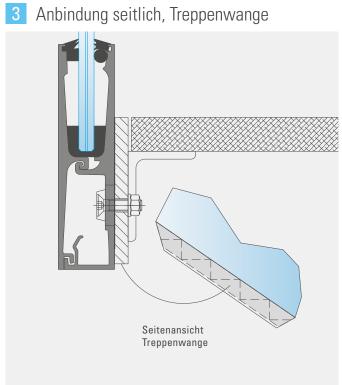
FIX*N SLIDE punktuelle Anbindung


Zeich.-Nr.: BA-Side1-104

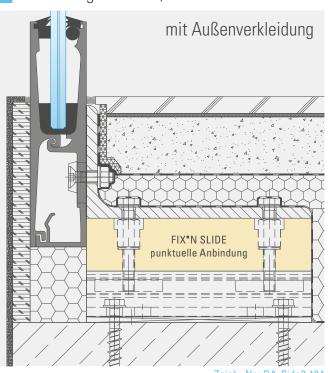
Systemprofil Side 2 Inside


Anwendungsbeispiele Innenbereich BALARDO core / smart (Systemprofil Side 3)

1 Anbindung seitlich, Profil überstehend



Zeicn.-Nr.: BA-Side2


2 Anbindung von oben, Profil überstehend

4 Anbindung von oben, Profil überstehend

Zeich.-Nr.: BA-Side2-103

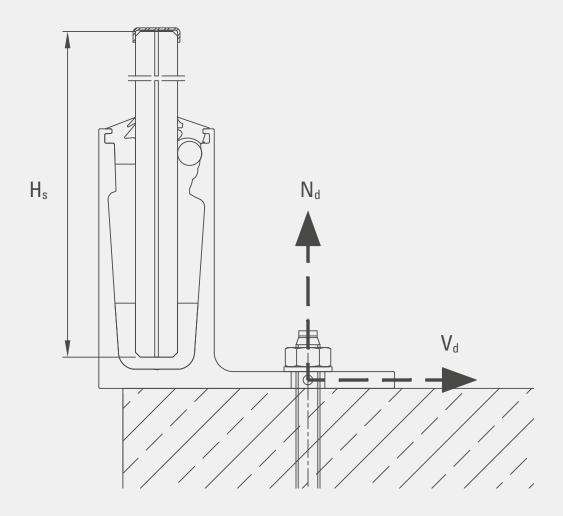
Zeich.-Nr.: BA-Side2-104

LIVING LEVELS BERLIN – FILIGRANES GI ASGELÄNDER FÜR TRANSPARENTE ARCHITEKTUR

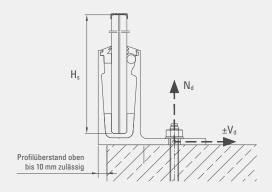
Rund 900 Meter Geländer wurden in dem Wohnhochhaus an der East Side Gallery in Berlin Projekt Living Levels von der Assmann + Klasen GbR montiert. Das Berliner Unternehmen kannte die Vorteile von BALARDO bereits von einem anderen Projekt. Aufgrund der positiven Erfahrung mit sicherer Projektabwicklung und Unterstützung in den einzelnen Projektphasen vertraute man bei Living Levels wie auch bei weiteren Folgeprojekten auf die reibungslose Zusammenarbeit mit GLASSLINE. Dabei waren vor allem technische wie auch wirtschaftliche Faktoren ausschlaggebend.

BALARDO *core* ermöglicht mit seinem CLICK®N FIX-Montageprinzip eine denkbar einfache und schnelle Installation. Aus dem perfekten Zusammenwirken aus Alu-Profil, Klemmschuh, Klemmstab sowie Innen- und Außendichtung ist die Scheibe ohne Werkzeuge im Nu absolut sicher und schnell arretiert.

Für den Einsatz im Living Levels hatte das System noch weitere Vorzüge parat. So beträgt der maximale Befestigungsabstand bei BALARDO *core* zwischen den einzelnen Schrauben unerreichte 500 mm. Im Vergleich zu anderen Systemen heißt das: weniger Verschraubung sowie weniger Montage- und damit Zeitaufwand. Gleichzeitig ist das Aluminiumprofil für eine Glasstärke von VSG 16 mm ausgelegt. Punkten konnte GLASSLINE auch durch Bereitstellung von Sonderlängen und Sonderbohrungen. Da kaum Verschnitt anfiel, konnten die Materialkosten deutlich gesenkt werden.



DIMENSIONIERUNG DER ANBINDUNG

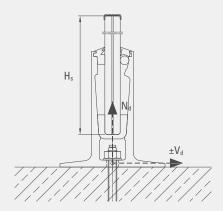

AUFLAGERKRÄFTE ZUR BEMESSUNG DER DÜBEL / VERSCHRAUBUNG

BALARDO core Systemprofil Top 1

Auflagerkräfte (rechnerische Werte – Zugkraft N_d [kN], Scherkraft V_d [kN])

Horizontale Nutzlasten: q_k = 0,5 kN/m, Anbindungsabstand A = 500 mm

Glashöhe							Cha	rakteristis	che Windl	ast W _e (kN	I/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	2,88
600	N _d	7,15	8,71	9,23	9,75	10,00	10,26	11,04	11,91	12,77	13,64	14,50	15,37	16,23	17,10	17,44
000	±V _d	0,38	0,54	0,62	0,71	0,76	0,80	0,89	0,98	1,07	1,16	1,25	1,34	1,43	1,52	1,56
800	N _d	9,48	12,23	13,15	14,25	15,02	15,78	17,31								
800	±V _d	0,38	0,62	0,74	0,86	0,92	0,98	1,10								
1000	N _d	11,81	16,09													
1000	±V _d	0,38	0,71													
1100	N _d	12,97														
1100	±V _d	0,38														
1200	N _d	14,14														
1200	±V _d	0,38														
1300	N _d	15,30														
1300	±V _d	0,38														
1400	N _d	16,46														
1400	±V _d	0,38														


Horizontale Nutzlasten: $q_k = 1.0$ kN/m, Anbindungsabstand A = 250 mm

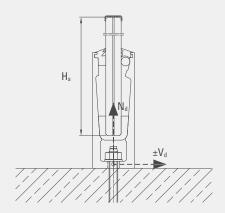
Glashöhe							Cha	rakteristis	che Windl	ast We (kN	l/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	2,88
600	N _d	6,94	7,72	7,97	8,23	8,36	8,49	8,75	9,01	9,27	9,53	9,79	10,05	10,40	10,83	11,00
000	±V _d	0,38	0,46	0,48	0,51	0,52	0,54	0,58	0,62	0,67	0,71	0,76	0,80	0,85	0,89	0,91
800	N _d	9,21	10,58	11,04	11,50	11,73	11,96	12,41								
000	±V _d	0,38	0,48	0,52	0,56	0,59	0,62	0,68								
1000	N _d	11,47	13,62													
1000	±V _d	0,38	0,51													
1100	N _d	12,61														
1100	±V _d	0,38														
1200	N _d	13,74														
1200	±V _d	0,38														
1300	N _d	14,88														
1300	±V _d	0,38														
1400	N _d	16,01														
1400	±V _d	0,38														

BALARDO core Systemprofil Top 2

Auflagerkräfte (rechnerische Werte – Zugkraft N_d [kN], Scherkraft V_d [kN])

Horizontale Nutzlasten: q_k = 0,5 kN/m, Anbindungsabstand A = 500 mm

Glashöhe							Cha	rakteristis	che Wind	last W _e (kN	l/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	4,28	5,24	5,55	5,87	6,03	6,19	6,67	7,20	7,72	8,25	8,78	9,31	9,84	10,37	10,90
000	±V _d	0,38	0,54	0,62	0,71	0,76	0,80	0,89	0,98	1,07	1,16	1,25	1,34	1,43	1,52	1,61
800	N _d	5,64	7,31	7,87	8,54	9,01	9,47	10,40	11,33	12,25	13,18	14,11	15,04	15,97	16,89	17,82
000	±V _d	0,38	0,62	0,74	0,86	0,92	0,98	1,10	1,22	1,34	1,46	1,58	1,70	1,82	1,94	2,06
1000	N _d	7,00	9,59	10,60	12,03	12,75	13,47	14,91	16,35	17,78	19,22	20,66				
1000	±V _d	0,38	0,71	0,86	1,01	1,09	1,16	1,31	1,46	1,61	1,76	1,91				
1100	N _d	7,68	10,80	12,25	13,99	14,85	15,72	17,46	19,19	20,92						
1100	±V _d	0,38	0,76	0,92	1,09	1,17	1,25	1,42	1,58	1,75						
1200	N _d	8,36	12,07	14,02	16,08	17,11	18,14	20,20								
1200	±V _d	0,38	0,80	0,98	1,16	1,25	1,34	1,52								
1300	N _d	9,04	13,49	15,90	18,31	19,52	20,72									
1000	±V _d	0,38	0,85	1,04	1,24	1,34	1,43									
1400	N _d	9,72	15,10	17,89	20,68											
1400	±V _d	0,38	0,89	1,10	1,31											
1500	N _d	10,40	16,80	19,99												
1300	±V _d	0,38	0,94	1,16												
1600	N _d	11,08	18,57													
1000	±V _d	0,38	0,98													
1800	N _d	11,05														
1000	±V _d	0,38														
2000	N _d	11,02														
2300	±V _d	0,38														
2100	N _d	11,00														
	±V _d	0,38														


Horizontale Nutzlasten: q_k = 1,0 kN/m, Anbindungsabstand A = 250 mm

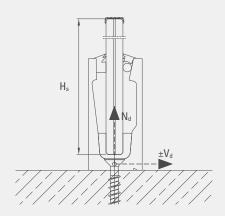
Glashöhe							Cha	rakteristis	che Windl	ast W _e (kN	/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	4,35	4,82	4,98	5,14	5,22	5,30	5,46	5,62	5,78	5,93	6,09	6,25	6,46	6,73	6,99
000	±V _d	0,38	0,46	0,48	0,51	0,52	0,54	0,58	0,62	0,67	0,71	0,76	0,80	0,85	0,89	0,94
800	N _d	5,72	6,56	6,83	7,11	7,25	7,39	7,67	7,95	8,23	8,62	9,08	9,55	10,01	10,48	
000	±V _d	0,38	0,48	0,52	0,56	0,59	0,62	0,68	0,74	0,80	0,86	0,92	0,98	1,04	1,10	
1000	N _d	7,10	8,39	8,82	9,25	9,47	9,68	10,11								
1000	±V _d	0,38	0,51	0,56	0,64	0,68	0,71	0,79								
1100	N _d	7,78	9,34	9,86	10,38											
1100	±V _d	0,38	0,52	0,59	0,68											
1200	N _d	8,47	10,32													
1200	±V _d	0,38	0,54													
1300	N _d	9,16														
1300	±V _d	0,38														
1400	N _d	9,84														
1400	±V _d	0,38														

BALARDO core Systemprofil Top 3

 $Auflagerkräfte (rechnerische Werte - Zugkraft N_d [kN], Scherkraft V_d [kN])$

Horizontale Nutzlasten: q_k = 0,5 kN/m, Anbindungsabstand A = 200 mm

Glashöhe							Cha	rakteristis	che Windl	ast W _e (kN	I/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	4,35	5,30	5,62	5,94	6,10	6,25	6,73	7,26	7,79	8,32	8,85	9,38	9,91	10,44	10,96
	±V _d	0,15	0,21	0,25	0,29	0,30	0,32	0,36	0,39	0,43	0,47	0,50	0,54	0,57	0,61	0,65
800	N _d ±V _d	5,72 0,15	7,39 0,25	7,95 0,30	8,62 0,35	9,09	9,55 0,39	10,48 0,44	11,41 0,49	12,33 0,54	13,26 0.59	14,19 0,63	15,12 0,68	16,04 0,73	16,97 0,78	17,90 0,83
	N _d	7,10	9,68	10,69	12,13	12,85	13,56	15,00	16,44	17,88	0,33	0,03	0,00	0,73	0,70	0,03
1000	±V _d	0,15	0,29	0,35	0,41	0,44	0,47	0,53	0.59	0,65						
4400	N _d	7,78	10,90	12,35	14,09	14,95	15,82	17,56	0,00	0,00						
1100	±V _d	0,15	0,30	0,37	0,44	0,47	0,50	0,57								
1200	N _d	8,47	12,17	14,13	16,19	17,22										
1200	±V _d	0,15	0,32	0,39	0,47	0,50										
1300	N _d	9,15	13,60	16,02												
1000	±V _d	0,15	0,34	0,42												
1400	N _d ±V _d	9,84	15,22 0,36													
	N _d	0,15 10,53	16,92													
1500	±V _d	0.15	0,38													
4000	N _d	11,21	0,00													
1600	±V _d	0,15														
1800	N _d	11,20														
1000	±V _d	0,15														
2000	N _d	11,18														
	±V _d	0,15														
2100	N _d ±V _d	11,17 0,15														
	⊥ ±Vd	0,13														


Horizontale Nutzlasten: q_k = 1,0 kN/m, Anbindungsabstand A = 100 mm

Glashöhe							Cha	rakteristis	che Windl	ast W _e (kN	l/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	4,38	4,86	5,01	5,17	5,25	5,33	5,49	5,65	5,81	5,97	6,13	6,28	6,50	6,76	7,03
000	±V _d	0,15	0,18	0,19	0,20	0,21	0,21	0,23	0,25	0,27	0,29	0,30	0,32	0,34	0,36	0,38
800	N _d	5,76	6,60	6,87	7,15	7,29	7,43	7,71	7,99	8,27	8,66	9,12				
000	±V _d	0,15	0,19	0,21	0,23	0,24	0,25	0,27	0,30	0,32	0,35	0,37				
1000	N _d	7,14	8,44	8,87												
1000	±V _d	0,15	0,20	0,23												
1100	N _d	7,83														
1100	±V _d	0,15														
1200	N _d	8,52														
1200	±V _d	0,15														

BALARDO core Systemprofil Top 4

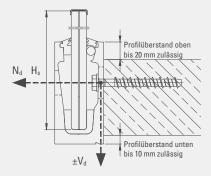
Auflagerkräfte (rechnerische Werte – Zugkraft N_d [kN], Scherkraft V_d [kN])

Horizontale Nutzlasten: q_k = 0,5 kN/m, Anbindungsabstand A = 500 mm

Glashöhe							Cha	rakteristis	che Windl	ast W _e (kN	l/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	3,6	4,39	4,65	4,92	5,05	5,18	5,57	6,01	6,45	6,89	7,32	7,76	8,2	8,64	9,08
000	±V _d	0,15	0,21	0,25	0,29	0,3	0,32	0,36	0,39	0,43	0,47	0,5	0,54	0,57	0,61	0,65
800	N _d	4,74	6,12	6,58	7,14	7,52	7,91	8,67	9,44	10,21	10,98	11,75	12,51	13,28	14,05	14,82
	±V _d	0,15 5,88	0,25 8,02	0,3 8,85	0,35	0,37	0,39	0,44 12,42	0,49 13,61	0,54	0,59	0,63 17,18	0,68	0,73	0,78	0,83
1000	N _d ±V _d	0,15	0,29	0,35	10,04 0,41	10,63 0,44	0,47	0,53	0,59	14,8 0,65	15,99 0.71	0.77	18,37 0,83			
	N _d	6,44	9,03	10,23	11,66	12,38	13,1	14,53	15,97	17,4	18,84	0,77	0,00			
1100	±V _d	0,15	0,3	0,37	0,44	0,47	0,5	0.57	0,63	0.7	0,77					
4000	N _d	7,01	10,08	11,7	13,4	14,25	15,11	16,81	18,51	07.	0,1.1					
1200	±V _d	0,15	0,32	0,39	0,47	0,5	0,54	0,61	0,68							
1300	N _d	7,58	11,27	13,26	15,25	16,25	17,25									
1300	±V _d	0,15	0,34	0,42	0,5	0,53	0,57									
1400	N _d	8,15	12,6	14,91	17,22	18,38										
1100	±V _d	0,15	0,36	0,44	0,53	0,57										
1500	N _d ±V _d	8,72	14,01	16,66												
	±V _d	0,15 9,29	0,38 15,49	0,47 18,5												
1600	±V _d	0,15	0,39	0,49												
	Nd	9,28	17,85	0,70												
1800	±Vd	0,15	0,43													
2000	N _d	9,26														
2000	±V _d	0,15														
2100	N _d	9,26														
2100	±V _d	0,15														

Horizontale Nutzlasten: q_k = 1,0 kN/m, Anbindungsabstand A = 250 mm

Glashöhe							Cha	rakteristis	che Windl	ast W _e (kN	l/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	3,63	4,02	4,15	4,28	4,35	4,41	4,55	4,68	4,81	4,94	5,07	5,20	5,38	5,60	5,82
000	±V _d	0,15	0,18	0,19	0,20	0,21	0,21	0,23	0,25	0,27	0,29	0,30	0,32	0,34	0,36	0,38
800	N _d	4,77	5,46	5,69	5,92	6,04	6,15	6,38	6,61	6,84	7,17	7,55	7,94	8,32	8,70	9,09
	±V _d	0,15 5.91	0,19 6,98	0,21 7,34	0,23 7.70	0,24 7,88	0,25 8,05	0,27 8,41	0,30 8,89	0,32 9,48	0,35 10,08	0,37	0,39	0,42	0,44	0,47
1000	±V _d	0.15	0,30	0,23	0,26	0,27	0,29	0,32	0,35	0,38	0.41	0,44	0,47			
	Nd	6,48	7,78	8,21	8,64	8,85	9,07	9,55	10,27	10,98	11,70	0,44	0,47			
1100	±Vd	0,15	0,21	0,24	0,27	0,29	0,30	0.34	0.37	0.40	0,44					
1200	N _d	7,06	8,59	9,10	9,61	9,87	10,12	10,89	11,74							
1200	±V _d	0,15	0,21	0,25	0,29	0,30	0,32	0,36	0,39							
1300	N _d	7,63	9,42	10,02	10,62	10,92	11,31									
1000	±V _d	0,15	0,22	0,26	0,30	0,32	0,34									
1400	N _d	8,20	10,28	10,97	11,66	12,08										
	±V _d	0,15 8,77	0,23 11,15	0,27 11,95	0,32	0,34										
1000	±V _d	0,15	0,24	0,29												
	N _d	9,34	12,05	0,20												
1100	±V _d	0,15	0,25													
1200	N _d	9,34														
1200	±V _d	0,15														
1300	N _d	9,33														
	±V _d	0,15														
1400	N _d ±V _d	9,33 0.15														
	±V _d	0,10														


Beim abweichenden Anbindungsabstand $A_{abw.}$ sind die Werte der Auflagerkräfte mit dem Faktor $F = (A_{abw.} [in mm] / A [mm])$ zu multiplizieren. Gedrehter Einbau bei $q_k > 0.5 \text{ kN/m}$ ist separat nachzuweisen.

BALARDO core Systemprofil Side 1

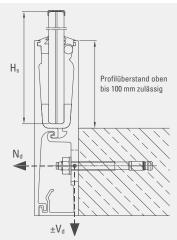
Auflagerkräfte (rechnerische Werte – Zugkraft N_d [kN], Scherkraft V_d [kN])

Horizontale Nutzlasten: q_k = 0,5 kN/m, Anbindungsabstand A = 500 mm

Glashöhe							Cha	rakteristis	che Windl	last W _e (kN	I/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	6,32	7,71	8,17	8,64	8,87	9,10	9,80	10,57	11,34	12,11	12,89	13,66	14,43	15,20	15,98
000	±V _d	0,24	0,24	0,24	0,24	0,24	0,24	0,24	0,24	0,24	0,24	0,24	0,24	0,24	0,24	0,24
800	N _d	8,37	10,83	11,65	12,63	13,32	14,00	15,36	16,72	18,09	19,45	20,81	22,18	23,54	24,90	26,27
	±V _d	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
1000	N _d	10,43	14,24	15,73	17,85	18,91	19,97	22,09	24,21	26,33	28,45	30,57	32,69	34,81	36,94	39,06
	±V _d	0,38	0,38	0,38	0,38	0,38	0,38	0,38	0,38	0,38	0,38	0,38	0,38	0,38	0,38	0,38
1100	N _d	11,45	16,06	18,21	20,77	22,05	23,33	25,89	28,45	31,02	33,58	36,14	38,70	41,26		
	±V _d	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41		
1200	N _d ±V _d	12,48	17,96 0.45	20,85	23,90	25,42	26,94	29,99	33,03	36,08	39,12 0.45	42,17				
	±V _d	0,45 13,50	20,09	0,45 23,66	0,45 27,23	0,45 29,02	0,45 30,80	0,45 34,37	0,45 37,94	0,45 41,51	0,40	0,45				
1300	±V _d	0.48	0.48	0,48	0,48	0,48	0,48	0.48	0.48	0,48						
	N _d	14,53	22,51	26,64	30,78	32,85	34,91	39,05	0,40	0,40						
1400	±V _d	0.51	0,51	0,51	0,51	0,51	0.51	0,51								
	Nd	15,56	25,04	29,79	34,53	36,90	39,27	0,01								
1500	±Vd	0,55	0,55	0,55	0,55	0,55	0,55									
4000	N _d	16.58	27,71	33,10	38,49	41,19										
1600	±V _d	0,58	0,58	0,58	0,58	0,58										
1800	N _d	16,55	31,95	38,76												
1000	±V _d	0,65	0,65	0,65												
2000	N _d	16,52	36,69													
2000	±V _d	0,72	0,72													
2100	N _d	16,50														
2100	±V _d	0,75														

Horizontale Nutzlasten: q_k = 1,0 kN/m, Anbindungsabstand A = 250 mm

Glashöhe							Cha	rakteristis	che Wind	last W _e (kN	I/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	4,34	4,81	4,96	5,12	5,19	5,27	5,43	5,58	5,73	6,06	6,44	6,83	7,22	7,60	7,99
000	±V _d	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12
800	N _d	5,75	6,57	6,84	7,11	7,25	7,38	7,68	8,36	9,04	9,73	10,41	11,09	11,77	12,45	13,13
000	±V _d	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16
1000	N _d	7,15	8,42	8,85	9,27	9,48	9,98	11,04	12,11	13,17	14,23	15,29	16,35	17,41	18,47	
1000	±V _d	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	
1100	N _d	7,85	9,39	9,90	10,41	11,02	11,67	12,95	14,23	15,51	16,79	18,07				
1100	±V _d	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21				
1200	N _d	8,55	10,38	10,99	11,95	12,71	13,47	14,99	16,52							
1200	±V _d	0,22	0,22	0,22	0,22	0,22	0,22	0,22	0,22							
1300	N _d	9,25	11,40	12,11	13,62	14,51	15,40	17,19								
1300	±V _d	0,24	0,24	0,24	0,24	0,24	0,24	0,24								
1400	N _d	9,96	12,44	13,32	15,39	16,42										
1400	±V _d	0,26	0,26	0,26	0,26	0,26										
1500	N _d	10,66	13,50	14,89												
1300	±V _d	0,27	0,27	0,27												
1600	N _d	11,36	14,59													
1000	±V _d	0,29	0,29													
1800	N _d	11,37														
1000	±V _d	0,32														
2000	N _d	11,39														
2000	±V _d	0,36														
2100	N _d	11,39														
2100	±V _d	0,37														

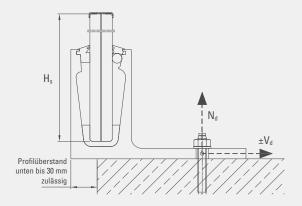

Beim abweichenden Anbindungsabstand $A_{abw.}$ sind die Werte der Auflagerkräfte mit dem Faktor $F = (A_{abw.} [in mm] / A [mm])$ zu multiplizieren. Gedrehter Einbau und Einbau mit Überstand ist separat nachzuweisen.

BALARDO core Systemprofil Side 2

Auflagerkräfte (rechnerische Werte – Zugkraft N_d [kN], Scherkraft V_d [kN])

Horizontale Nutzlasten: $q_k = 0.5 \text{ kN/m}$, Anbindungsabstand A = 500 mm

Glashöhe							Cha	rakteristis	che Wind	last W _e (kN	I/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
coo	N _d	6,41	7,74	8,19	8,64	8,86	9,09	9,77	10,52	11,27	12,02	12,77	13,52	14,27	15,02	15,77
600	±V _d	0,26	0,26	0,26	0,26	0,26	0,26	0,26	0,26	0,26	0,26	0,26	0,26	0,26	0,26	0,26
800	N _d	8,19	10,50	11,27	12,20	12,85	13,49	14,78	16,06	17,35	18,63	19,92	21,20	22,49	23,77	25,06
000	±V _d	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33
1000	N _d	9,99	13,52	14,90	16,86	17,84	18,82	20,78	22,74	24,70	26,66	28,62	30,58			
1000	±V _d	0,40	0,40	0,40	0,40	0,40	0,40	0,40	0,40	0,40	0,40	0,40	0,40			
1100	N _d	10,89	15,13	17,10	19,45	20,62	21,80	24,15	26,50	28,86						
1100	±V _d	0,43	0,43	0,43	0,43	0,43	0,43	0,43	0,43	0,43						
1200	N _d	11,80	16,80	19,44	22,22	23,61	25,00	27,77								
1200	±V _d	0,47	0,47	0,47	0,47	0,47	0,47	0,47								
1300	N _d	12,70	18,68	21,92	25,16	26,78	28,40									
1000	±V _d	0,50	0,50	0,50	0,50	0,50	0,50									
1400	N _d	13,60	20,81	24,55	28,29											
1100	±V _d	0,53	0,53	0,53	0,53											
1500	N _d	14,50	23,04	27,32												
	±V _d	0,57	0,57	0,57												
1600	N _d	15,40	25,39													
	±V _d	0,60	0,60													
1800	N _d	15,43														
	±V _d	0,67														
2000	N _d	15,46														
	±V _d	0,74														
2100	N _d	15,48														
	±V _d	0,77														


Horizontale Nutzlasten: q_k = 1,0 kN/m, Anbindungsabstand A = 250 mm

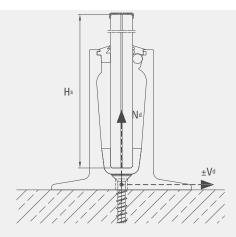
Glashöhe								Charakte	ristische \	Windlast V	V _e (kN/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	6,33	6,90	7,12	7,35	7,46	7,57	7,80	8,02	8,25	8,47	8,70	8,93	9,23	9,60	9,98
000	±V _d	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13
800	N _d	7,99	9,14	9,53	9,91	10,11	10,30	10,68	11,07	11,45	12,00	12,64	13,29	13,93	14,57	15,21
000	±V _d	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17
1000	N _d	9,75	11,51	12,10	12,69	12,98	13,28	13,87	14,65							
1000	±V _d	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20							
1100	N _d	10,63	12,75	13,45	14,16	14,51	14,86									
1100	±V _d	0,22	0,22	0,22	0,22	0,22	0,22									
1200	N _d	11,51	14,01	14,85												
1200	±V _d	0,23	0,23	0,23												
1300	N _d	12,39														
1300	±V _d	0,25														
1400	N _d	13,28														
1400	±V _d	0,27														
1500	N _d	14,16														
1300	±V _d	0,28														

BALARDO core hd **Systemprofil Top 1**

Auflagerkräfte (rechnerische Werte – Zugkraft N_d [kN], Scherkraft V_d [kN])

Horizontale Nutzlasten: q_k = 2,0 kN/m, Anbindungsabstand A = 200 mm

Glashöhe							Cha	rakteristis	che Wind	last W _e (kN	/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	3,78	4,23	4,38	4,53	4,60	4,68	4,82	4,97	5,12	5,27	5,42	5,57	5,77	6,01	6,26
000	±V _d	0,60	0,66	0,69	0,71	0,72	0,73	0,75	0,77	0,79	0,82	0,84	0,86	0,89	0,92	0,96
800	N _d	5,03	5,82	6,08	6,34	6,47	6,60	6,87	7,13	7,39	7,76	8,20	8,64	9,08	9,51	9,95
000	±V _d	0,60	0,69	0,72	0,74	0,76	0,77	0,80	0,83	0,86	0,90	0,95	1,00	1,04	1,09	1,14
1000	N _d	6,28	7,50	7,91	8,32	8,52	8,73	9,13	9,68	10,36	11,04	11,72	12,40	13,08	13,76	14,44
1000	±V _d	0,60	0,71	0,74	0,78	0,80	0,82	0,85	0,90	0,96	1,02	1,08	1,14	1,20	1,26	1,32
1100	N _d	6,90	8,38	8,87	9,37	9,61	9,86	10,41	11,23	12,05	12,87	13,70	14,52	15,34	16,16	16,98
1100	±V _d	0,60	0,72	0,76	0,80	0,82	0,84	0,88	0,95	1,01	1,08	1,15	1,21	1,28	1,34	1,41
1200	N _d	7,53	9,28	9,87	10,45	10,75	11,04	11,92	12,89	13,87	14,85	15,82	16,80	17,77	18,75	19,73
1200	±V _d	0,60	0,73	0,77	0,82	0,84	0,86	0,92	1,00	1,07	1,14	1,21	1,28	1,36	1,43	1,50
1300	N _d	8,15	10,21	10,89	11,58	11,92	12,37	13,52	14,66	15,80	16,95	18,09	19,24			
1300	±V _d	0,60	0,74	0,79	0,83	0,86	0,89	0,97	1,04	1,12	1,20	1,28	1,36			
1400	N _d	8,77	11,16	11,95	12,75	13,22	13,88	15,21	16,54	17,86						
1400	±V _d	0,60	0,75	0,80	0,85	0,88	0,92	1,01	1,09	1,18						
1500	N _d	9,40	12,13	13,04	13,96	14,72	15,48									
1300	±V _d	0,60	0,76	0,82	0,87	0,92	0,96									
1600	N _d	10,02	13,13	14,17												
1000	±V _d	0,60	0,77	0,83												
1800	N _d	9,93														
1000	±V _d	0,60														


Horizontale Nutzlasten: $q_k = 5.0 \text{ kN/m}$, Anbindungsabstand A = 100 mm

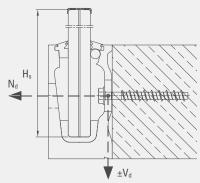
Glashöhe							Cha	rakteristis	che Windl	ast W _e (kN	/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	4,99	5,21	5,29	5,36	5,40	5,44	5,51	5,59	5,66	5,74	5,81	5,88	5,96	6,03	6,11
000	+V.	0.75	0.78	0.79	0.80	0.81	0.81	0.83	0.84	0.85	0.86	0.87	0.88	0.89	0.90	0.91

BALARDO core hd **Systemprofil Top 2**

Auflagerkräfte (rechnerische Werte – Zugkraft N_d [kN], Scherkraft V_d [kN])

Horizontale Nutzlasten: $q_k = 2.0 \text{ kN/m}$, Anbindungsabstand A = 200 mm

Glashöhe							Cha	rakteristis	che Wind	ast W _e (kN	l/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	5,10	5,39	5,48	5,57	5,62	5,67	5,76	5,85	5,95	6,04	6,14	6,23	6,32	6,42	6,51
000	±V _d	0,60	0,66	0,69	0,71	0,72	0,73	0,75	0,77	0,79	0,82	0,84	0,86	0,89	0,92	0,96
800	N _d	6,75	7,24	7,41	7,57	7,65	7,74	7,90	8,07	8,23	8,40	8,56	8,73	8,89	9,06	9,22
000	±V _d	0,60	0,69	0,72	0,74	0,76	0,77	0,80	0,83	0,86	0,90	0,95	1,00	1,04	1,09	1,14
1000	N _d	8,39	9,16	9,41	9,67	9,80	9,93	10,18	10,44	10,70	10,95	11,21	11,46	11,72	11,98	12,23
1000	±V _d	0,60	0,71	0,74	0,78	0,80	0,82	0,85	0,90	0,96	1,02	1,08	1,14	1,20	1,26	1,32
1100	N _d	9,21	10,14	10,45	10,76	10,91	11,07	11,38	11,69	12,00	12,30	12,61	12,92	13,23	13,62	14,13
1100	±V _d	0,60	0,72	0,76	0,80	0,82	0,84	0,88	0,95	1,01	1,08	1,15	1,21	1,28	1,34	1,41
1200	N _d	10,03	11,13	11,50	11,87	12,05	12,24	12,60	12,97	13,34	13,71	14,07	14,44	14,93	15,54	16,16
1200	±V _d	0,60	0,73	0,77	0,82	0,84	0,86	0,92	1,00	1,07	1,14	1,21	1,28	1,36	1,43	1,50
1300	N _d	10,85	12,15	12,58	13,01	13,22	13,44	13,87	14,30	14,73	15,16	15,59	16,15	16,87	17,59	18,31
1300	±V _d	0,60	0,74	0,79	0,83	0,86	0,89	0,97	1,04	1,12	1,20	1,28	1,36	1,43	1,51	1,59
1400	N _d	11,68	13,17	13,67	14,17	14,42	14,67	15,17	15,67	16,16	16,66	17,26	18,09	18,92	19,75	20,58
1400	±V _d	0,60	0,75	0,80	0,85	0,88	0,92	1,01	1,09	1,18	1,26	1,34	1,43	1,51	1,60	1,68
1500	N _d	12,50	14,21	14,78	15,36	15,64	15,93	16,50	17,07	17,64	18,22	19,17	20,12	21,07	22,03	22,98
1300	±V _d	0,60	0,76	0,82	0,87	0,92	0,96	1,05	1,14	1,23	1,32	1,41	1,50	1,59	1,68	1,77
1600	N _d	13,32	15,27	15,92	16,57	16,89	17,22	17,87	18,52	19,17	20,09	21,17	22,26	23,34	24,42	25,51
1000	±V _d	0,60	0,77	0,83	0,90	0,95	1,00	1,09	1,19	1,28	1,38	1,48	1,57	1,67	1,76	1,86
1800	N _d	13,29	15,76	16,58	17,40	17,81	18,22	19,04	20,18	21,55	22,92	24,29				
1000	±V _d	0,60	0,79	0,86	0,96	1,01	1,07	1,18	1,28	1,39	1,50	1,61				
2000	N _d	13,27	16,31	17,32	18,33	18,84	19,34	21,02	22,71							
2000	±V _d	0,60	0,82	0,90	1,02	1,08	1,14	1,26	1,38							
2100	N _d	13,26	16,60	17,72	18,84	19,42	20,35	22,21								
2100	±V _d	0,60	0,83	0,92	1,05	1,11	1,18	1,30								


Horizontale Nutzlasten: q_k = 5,0 kN/m, Anbindungsabstand A = 100 mm

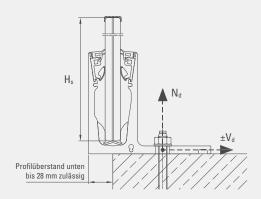
Glashöhe							Cha	rakteristis	che Wind	last W _e (kN	/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	6,46	6,60	6,65	6,69	6,72	6,74	6,79	6,83	6,88	6,93	6,97	7,02	7,07	7,11	7,16
000	±V _d	0,75	0,78	0,79	0,80	0,81	0,81	0,83	0,84	0,85	0,86	0,87	0,88	0,89	0,90	0,91
800	N _d	8,53	8,78	8,86	8,94	8,98	9,02	9,11	9,19	9,27	9,35	9,44	9,52	9,60	9,68	9,77
000	±V _d	0,75	0,79	0,81	0,82	0,83	0,84	0,85	0,87	0,88	0,89	0,91	0,92	0,94	0,95	0,97
1000	N _d	10,60	10,99	11,11	11,24	11,31	11,37	11,50	11,63	11,75	11,88	12,01	12,14	12,27	12,39	12,52
1000	±V _d	0,75	0,80	0,82	0,84	0,85	0,86	0,88	0,89	0,91	0,93	0,95	0,97	0,98	1,00	1,02
1100	N _d	11,64	12,10	12,26	12,41	12,49	12,56	12,72	12,87	13,03	13,18	13,34				
1100	±V _d	0,75	0,81	0,83	0,85	0,86	0,87	0,89	0,91	0,93	0,95	0,97				
1200	N _d	12,67	13,22													
1200	±V _d	0,75	0,81													
1300	N _d	13,71														
1300	±V _d	0,75														
1400	N _d	14,74														
1400	±V _d	0,75														

BALARDO core hd **Systemprofil Side 1**

Auflagerkräfte (rechnerische Werte – Zugkraft N_d [kN], Scherkraft V_d [kN])

Horizontale Nutzlasten: q_k = 2,0 kN/m, Anbindungsabstand A = 200 mm

Glashöhe							Cha	rakteristis	che Windl	ast W _e (kN	l/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	6,03	6,35	6,45	6,56	6,61	6,67	6,78	6,88	6,99	7,10	7,20	7,31	7,42	7,53	7,63
000	±V _d	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15
800	N _d	7,95	8,51	8,70	8,89	8,99	9,08	9,27	9,46	9,65	9,83	10,02	10,21	10,40	10,59	10,79
000	±V _d	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19
1000	N _d	9,87	10,75	11,04	11,34	11,48	11,63	11,92	12,22	12,51	12,80	13,09	13,40	14,12	14,83	15,54
1000	±V _d	0,23	0,23	0,23	0,23	0,23	0,23	0,23	0,23	0,23	0,23	0,23	0,23	0,23	0,23	0,23
1100	N _d	10,83	11,90	12,25	12,60	12,78	12,96	13,31	13,66	14,02	14,37	14,79	15,65	16,51	17,37	18,23
1100	±V _d	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25
1200	N _d	11,80	13,06	13,48	13,90	14,11	14,32	14,74	15,16	15,58	16,02	17,04	18,06	19,09	20,11	21,13
1200	±V _d	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27
1300	N _d	12,76	14,24	14,73	15,22	15,47	15,71	16,20	16,70	17,19	18,25	19,45	20,64			
1300	±V _d	0,29	0,29	0,29	0,29	0,29	0,29	0,29	0,29	0,29	0,29	0,29	0,29			
1400	N _d	13,72	15,43	16,00	16,57	16,86	17,14	17,71	18,28	19,23						
1400	±V _d	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31						
1500	N _d	14,68	16,64	17,30	17,95	18,28	18,60									
1300	±V _d	0,33	0,33	0,33	0,33	0,33	0,33									
1600	N _d	15,64	17,87	18,62												
1000	±V _d	0,35	0,35	0,35												
1800	N _d	15,66														
1000	±V _d	0,39														


Horizontale Nutzlasten: $q_k = 5.0 \text{ kN/m}$, Anbindungsabstand A = 100 mm

Glashöhe							Cha	rakteristis	che Windl	ast W _e (kN	l/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	7,48	7,64	7,69	7,74	7,77	7,80	7,85	7,91	7,96	8,01	8,07	8,12	8,17	8,23	8,28
000	±V _d	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07

BALARDO hybrid **Systemprofil Top 1**

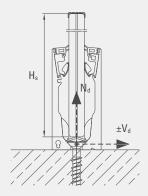
Auflagerkräfte (rechnerische Werte – Zugkraft N_d [kN], Scherkraft V_d [kN])

Horizontale Nutzlasten: q_k = 0,5 kN/m, Anbindungsabstand A = 500 mm

Glashöhe							Cha	rakteristis	che Windl	ast W _e (kN	l/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d ±V _d	4,31 0,38	5,32 0,54	5,66 0,62	5,99 0,71	6,16 0,76	6,33 0,80	6,83 0,89	7,39 0,98	7,95 1,07	8,51 1,16	9,07 1,25	9,63 1,34	10,19 1,43	10,74 1,52	10,97 1,56
	N _d	5.74	7.52	8.11	8,83	9,33	9.82	10.81	11.79	12.78	13.77	14.76	15,75	16,73	17,72	18,12
800	±V _d	0,38	0,62	0,74	0,86	0,92	0,98	1,10	1,22	1,34	1,46	1,58	1,70	1,82	1,94	1,99
1000	N _d	7,17	9,94	11,02	12,56	13,32	14,09	15,63	17,17	18,71	20,25	21,78	23,32	24,86		
1000	±V _d	0,38	0,71	0,86	1,01	1,09	1,16	1,31	1,46	1,61	1,76	1,91	2,06	2,21		
1100	N _d	7,89 0,38	11,23 0.76	12,79 0,92	14,65 1,09	15,57 1,17	16,50 1,25	18,36 1,42	20,22 1,58	22,08 1.75	23,94 1,91					
	N _d	8,60	12,58	14,68	16,89	17,99	19,10	21,30	23,51	1,73	1,31					
1200	±V _d	0,38	0,80	0,98	1,16	1,25	1,34	1,52	1,70							
1300	N _d	9,32	14,10	16,69	19,28	20,57	21,87	24,46								
1300	±V _d	0,38	0,85	1,04	1,24	1,34	1,43	1,63								
1400	N _d ±V _d	10,03	15,82	18,82	21,82	23,32	24,82									
	±V _d	0,38 10,75	0,89 17,63	1,10 21,08	1,31 24,52	1,42	1,52									
1500	±V _d	0.38	0,94	1,16	1,39											
1600	N _d	11,46	19,54	23,45	.,,00											
1000	±V _d	0,38	0,98	1,22												
1800	N _d	11,37	22,55													
	±V _d	0,38	1,07													
2000	±V _d	11,29 0,38														
0.400	N _d	11,25														
2100	±V _d	0,38														

Horizontale Nutzlasten: q_k = 1,0 kN/m, Anbindungsabstand A = 250 mm

	raotom qk	.,,,		ıysanstanı		•••										
Glashöhe							Cha	rakteristis	che Wind	ast W _e (kN	l/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	4,49	4,99	5,16	5,33	5,41	5,49	5,66	5,83	6,00	6,16	6,33	6,50	6,72	7,00	7,11
000	±V _d	0,38	0,46	0,48	0,51	0,52	0,54	0,58	0,62	0,67	0,71	0,76	0,80	0,85	0,89	0,91
800	N _d	5,96	6,85	7,14	7,44	7,59	7,74	8,03	8,33	8,63	9,05	9,54	10,03	10,53	11,02	11,22
000	±V _d	0,38	0,48	0,52	0,56	0,59	0,62	0,68	0,74	0,80	0,86	0,92	0,98	1,04	1,10	1,13
1000	N _d	7,43	8,82	9,28	9,74	9,97	10,20	10,66	11,28	12,04	12,81	13,58	14,35	15,12		
1000	±V _d	0,38	0,51	0,56	0,64	0,68	0,71	0,79	0,86	0,94	1,01	1,09	1,16	1,24		
1100	N _d	8,17	9,84	10,40	10,95	11,23	11,51	12,14	13,07	14,00	14,92					
1100	±V _d	0,38	0,52	0,59	0,68	0,72	0,76	0,84	0,92	1,01	1,09					
1200	N _d	8,90	10,89	11,55	12,22	12,55	12,88	13,87	14,98							
1200	±V _d	0,38	0,54	0,62	0,71	0,76	0,80	0,89	0,98							
1300	N _d	9,64	11,97	12,75	13,52	13,91	14,42	15,72								
1000	±V _d	0,38	0,56	0,65	0,75	0,80	0,85	0,95								
1400	N _d	10,38	13,08	13,98	14,88	15,41	16,16									
1 100	±V _d	0,38	0,58	0,68	0,79	0,84	0,89									
1500	N _d	11,11	14,21	15,24	16,28											
	±V _d	0,38	0,60	0,71	0,83											
1600	N _d	11,85	15,37	16,55												
1000	±V _d	0,38	0,62	0,74												
1800	N _d	11,80														
	±V _d	0,38														
2000	N _d	11,76														
	±V _d	0,38														


Beim abweichenden Anbindungsabstand $A_{abw.}$ sind die Werte der Auflagerkräfte mit dem Faktor $F = (A_{abw.} [in mm] / A [mm])$ zu multiplizieren. Gedrehter Einbau und Einbau mit Überstand ist separat nachzuweisen.

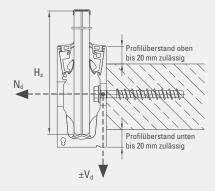
BALARDO hybrid **Systemprofil Top 4**

Auflagerkräfte (rechnerische Werte – Zugkraft N_d [kN], Scherkraft V_d [kN])

Horizontale Nutzlasten: q_k = 0,5 kN/m, Anbindungsabstand A = 500 mm

Glashöhe							Cha	rakteristis	che Wind	last W _e (kN	I/m²)					
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	3,60	4,39	4,65	4,92	5,05	5,18	5,57	6,01	6,45	6,89	7,32	7,76	8,20	8,64	9,08
	±V _d	0,15	0,21	0,25	0,29	0,30	0,32	0,36	0,39	0,43	0,47	0,50	0,54	0,57	0,61	0,65
800	N _d	4,74	6,12	6,58	7,14	7,52	7,91	8,67	9,44	10,21	10,98	11,75	12,51	13,28	14,05	14,82
	±V _d	0,15	0,25	0,30	0,35	0,37	0,39	0,44	0,49	0,54	0,59	0,63	0,68	0,73	0,78	0,83
1000	N _d	5,88	8,02	8,85	10,04	10,63	11,23	12,42	13,61	14,80	15,99	17,18	18,37	19,56	20,75	21,94
	±V _d	0,15	0,29	0,35	0,41	0,44	0,47	0,53	0,59	0,65	0,71	0,77	0,83	0,89	0,95	1,01
1100	N _d	6,44	9,03	10,23	11,66	12,38	13,10	14,53	15,97	17,40	18,84	20,27	21,71	23,14	24,58	26,01
	±V _d	0,15	0,30	0,37	0,44	0,47	0,50	0,57	0,63	0,70	0,77	0,83	0,90	0,96	1,03	1,10
1200	N _d	7,01	10,08	11,70	13,40	14,25	15,11	16,81	18,51	20,22	21,92	23,62	25,33	27,03		
	±V _d	0,15	0,32	0,39	0,47	0,50	0,54	0,61	0,68	0,75	0,83	0,90	0,97	1,04		
1300	N _d	7,58	11,27	13,26	15,25	16,25	17,25	19,24	21,24	23,23	25,23	27,22				
	±V _d	0,15	0,34	0,42	0,50	0,53	0,57	0,65	0,73	0,81	0,89	0,96				
1400	N _d	8,15	12,60	14,91	17,22	18,38	19,53	21,84	24,15	26,46						
	±V _d	0,15	0,36	0,44	0,53	0,57	0,61	0,69	0,78	0,86						
1500	N _d	8,72	14,01	16,66	19,31	20,63	21,95	24,60	27,25							
	±V _d	0,15	0,38	0,47	0,56	0,60	0,65	0,74	0,83							
1600	N _d	9,29	15,49	18,50	21,50	23,01	24,51	27,52								
	±V _d	0,15	0,39	0,49	0,59	0,63	0,68	0,78								
1800	N _d	9,28	17,85	21,64	25,44											
	±V _d	0,15	0,43	0,54	0,65											
2000	N _d	9,26	20,48	25,16												
	±V _d	0,15	0,47	0,59												
2100	N _d	9,26	21,90													
	±V _d	0,15	0,48													

Horizontale Nutzlasten: q_k = 1,0 kN/m, Anbindungsabstand A = 250 mm


Glashöhe		innen					Außen	bereich – d	harakteri	stische Wi	ndlast W _e	(kN/m²)				
H _s (mm)		IIIIIeii	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	3,63	4,02	4,15	4,28	4,35	4,41	4,55	4,68	4,81	4,94	5,07	5,20	5,38	5,60	5,82
000	±V _d	0,15	0,18	0,19	0,20	0,21	0,21	0,23	0,25	0,27	0,29	0,30	0,32	0,34	0,36	0,38
800	N _d	4,77	5,46	5,69	5,92	6,04	6,15	6,38	6,61	6,84	7,17	7,55	7,94	8,32	8,70	9,09
000	±V _d	0,15	0,19	0,21	0,23	0,24	0,25	0,27	0,30	0,32	0,35	0,37	0,39	0,42	0,44	0,47
1000	N _d	5,91	6,98	7,34	7,70	7,88	8,05	8,41	8,89	9,48	10,08	10,67	11,27	11,86	12,46	13,05
1000	±V _d	0,15	0,20	0,23	0,26	0,27	0,29	0,32	0,35	0,38	0,41	0,44	0,47	0,50	0,53	0,56
1100	N _d	6,48	7,78	8,21	8,64	8,85	9,07	9,55	10,27	10,98	11,70	12,42	13,14	13,85		
1100	±V _d	0,15	0,21	0,24	0,27	0,29	0,30	0,34	0,37	0,40	0,44	0,47	0,50	0,53		
1200	N _d	7,06	8,59	9,10	9,61	9,87	10,12	10,89	11,74	12,59	13,44					
1200	±V _d	0,15	0,21	0,25	0,29	0,30	0,32	0,36	0,39	0,43	0,47					
1300	N _d	7,63	9,42	10,02	10,62	10,92	11,31	12,31	13,31							
1300	±V _d	0,15	0,22	0,26	0,30	0,32	0,34	0,38	0,42							
1400	N _d	8,20	10,28	10,97	11,66	12,08	12,65	13,81								
1400	±V _d	0,15	0,23	0,27	0,32	0,34	0,36	0,40								
1500	N _d	8,77	11,15	11,95	12,74	13,40										
1300	±V _d	0,15	0,24	0,29	0,33	0,35										
1600	N _d	9,34	12,05	12,95												
1000	±V _d	0,15	0,25	0,30												
1800	N _d	9,34														
1000	±V _d	0,15														
2000	N _d	9,33														
2000	±V _d	0,15														
2100	N _d	9,33														
2100	±V _d	0,15														

 $Beim\ abweichenden\ Anbindungsabstand\ A_{abw.}\ sind\ die\ Werte\ der\ Auflagerkr\"{a}fte\ mit\ dem\ Faktor\ F = (A_{abw.}\ [in\ mm]\ /\ A\ [mm])\ zu\ multiplizieren.$

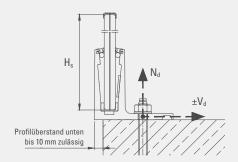
BALARDO hybrid **Systemprofil Side 1**

Auflagerkräfte (rechnerische Werte – Zugkraft N_d [kN], Scherkraft V_d [kN])

Horizontale Nutzlasten: $q_k = 0.5 \text{ kN/m}$, Anbindungsabstand A = 500 mm

Glashöhe		Charakteristische Windlast W _e (kN/m²)														
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	5,03	6,14	6,51	6,88	7,06	7,25	7,80	8,41	9,03	9,64	10,26	10,87	11,49	12,10	12,72
000	±V _d	0,24	0,24	0,24	0,24	0,24	0,24	0,24	0,24	0,24	0,24	0,24	0,24	0,24	0,24	0,24
800	N _d	6,67	8,63	9,28	10,07	10,61	11,16	12,24	13,33	14,42	15,50	16,59	17,68	18,76	19,85	20,94
800	±V _d	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
1000	N _d	8,32	11,36	12,54	14,24	15,08	15,93	17,62	19,31	21,00	22,69	24,39	26,08	27,77	29,46	31,15
1000	±V _d	0,38	0,38	0,38	0,38	0,38	0,38	0,38	0,38	0,38	0,38	0,38	0,38	0,38	0,38	0,38
1100	N _d	9,14	12,82	14,53	16,57	17,59	18,61	20,66	22,70	24,75	26,79	28,83	30,88	32,92	34,97	37,01
1100	±V _d	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41	0,41
1200	N _d	9,96	14,33	16,64	19,07	20,28	21,50	23,93	26,36	28,79	31,22	33,65	36,08			
1200	±V _d	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45			
1300	N _d	10,78	16,04	18,89	21,74	23,16	24,59	27,43	30,28	33,13	35,98					
1300	±V _d	0,48	0,48	0,48	0,48	0,48	0,48	0,48	0,48	0,48	0,48					
1400	N _d	11,60	17,97	21,27	24,57	26,22	27,87	31,17	34,47							
1400	±V _d	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51							
1500	N _d	12,42	19,99	23,78	27,57	29,46	31,36	35,14								
1300	±V _d	0,55	0,55	0,55	0,55	0,55	0,55	0,55								
1600	N _d	13,24	22,12	26,43	30,74	32,89	35,04									
1000	±V _d	0,58	0,58	0,58	0,58	0,58	0,58									
1800	N _d	13,22	25,51	30,96												
1000	±V _d	0,65	0,65	0,65												
2000	N _d	13,19	29,30													
2000	±V _d	0,72	0,72													
2100	N _d	13,18	31,35													
	±V _d	0,75	0,75													

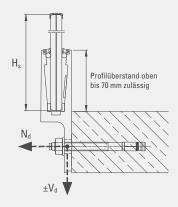
Horizontale Nutzlasten: q_k = 1,0 kN/m, Anbindungsabstand A = 250 mm


Glashöhe		Charakteristische Windlast W₀ (kN/m²)														
H _s (mm)		0,00	0,60	0,80	1,00	1,10	1,20	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00
600	N _d	4,73	5,23	5,40	5,57	5,65	5,73	5,90	6,07	6,24	6,41	6,57	6,74	6,96	7,24	7,52
000	±V _d	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12
800	N _d	6,26	7,15	7,45	7,74	7,89	8,04	8,34	8,63	8,93	9,35	9,84	10,34	10,83	11,32	11,82
000	±V _d	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16
1000	N _d	7,80	9,18	9,64	10,10	10,33	10,56	11,03	11,64	12,41	13,18	13,95	14,72	15,49	16,25	17,02
1000	±V _d	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19
1100	N _d	8,56	10,24	10,79	11,35	11,63	11,91	12,53	13,46	14,39	15,32	16,25				
1100	±V _d	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21				
1200	N _d	9,33	11,32	11,98	12,64	12,98	13,31	14,30	15,41	16,51						
1200	±V _d	0,22	0,22	0,22	0,22	0,22	0,22	0,22	0,22	0,22						
1300	N _d	10,10	12,43	13,21	13,98	14,37	14,88	16,17								
	±V _d	0,24	0,24	0,24	0,24	0,24	0,24	0,24								
1400	N _d	10,86	13,57	14,47	15,37	15,90	16,65									
1100	±V _d	0,26	0,26	0,26	0,26	0,26	0,26									
1500	N _d	11,63	14,73	15,76	16,80											
	±V _d	0,27	0,27	0,27	0,27											
1600	N _d	12,40	15,92	17,10												
1000	±V _d	0,29	0,29	0,29												
1800	N _d	12,42														
1800	±V _d	0,32														
2000	N _d	12,44														
2000	±V _d	0,36														

Beim abweichenden Anbindungsabstand $A_{abw.}$ sind die Werte der Auflagerkräfte mit dem Faktor $F = (A_{abw.} [in mm] / A [mm])$ zu multiplizieren. Gedrehter Einbau und Einbau mit Überstand ist separat nachzuweisen.

BALARDO smart Systemprofil Top 1

Auflagerkräfte (rechnerische Werte – Zugkraft N_d [kN], Scherkraft V_d [kN])


Horizontale Nutzlasten: $q_k = 0.5 \text{ kN/m}$, Anbindungsabstand A = 500 mm

Glashöhe		Innenbereich W _o (kN/m²)
H _s (mm)		0,00
600	N _d	7,08
000	±V _d	0,38
800	N _d	9,41
800	±V _d	0,38
1000	N _d	11,74
1000	±V _d	0,38
1100	N _d	12,91
1100	±V _d	0,38

BALARDO smart **Systemprofil Side 3**

Auflagerkräfte (rechnerische Werte – Zugkraft N_d [kN], Scherkraft V_d [kN])

Horizontale Nutzlasten: $q_k = 0.5 \text{ kN/m}$, Anbindungsabstand A = 500 mm

Glashöhe		Innenbereich W _e (kN/m²)
H _s (mm)		0,00
600	N _d	4,72
000	±V _d	0,10
800	N _d	6,13
000	±V _d	0,12
1000	N _d	7,54
1000	±V _d	0,15
1100	N _d	8,24
1100	±V _d	0,17

OPTISCH ANSPRECHEND UND MODERN -

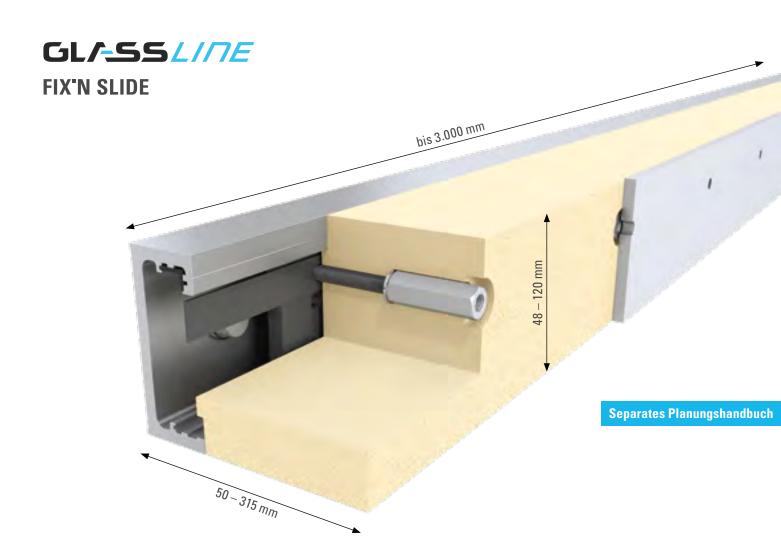
DER HAUPTBAHNHOF WUPPERTAL-DÖPPERSBERG

Auch ein Verkehrsknotenpunkt lässt sich mit Glas edel und zeitgemäß gestalten. Das belegt die Modernisierung des Hauptbahnhofs in Wuppertal-Elberfeld.

In dem beeindruckenden Modernisierungsprojekt wurde der Bahnhofsvorplatz vor dem historischen Empfangsgebäude auf zwei Ebenen gegliedert: Auf der unteren Ebene entstand eine Mall mit 15 Geschäftseinheiten, daran schließt sich das neu erbaute Parkdeck mit 240 Pkw-Stellplätzen an. Darüber entstand der neue Busbahnhof, der teilweise direkten Zugang zu den Bahngleisen bietet. Eine stimmig wirkende Natursteinfassade umschließt sowohl Mall als auch Parkdeck. Im Inneren sorgen Stahlstützenkränze nicht nur für Tageslicht, sondern auch für eine hochmoderne Gestaltung. Diesen Eindruck unterstreicht das Glasgeländer an den Zugangstreppen zum Parkdeck. Der Bauherr hatte hier ein modulares System im Brüstungs- und Treppenbereich ausgeschrieben, das aus einem Glas-Tragprofil, VSG-Verglasung, einem Handlauf aus

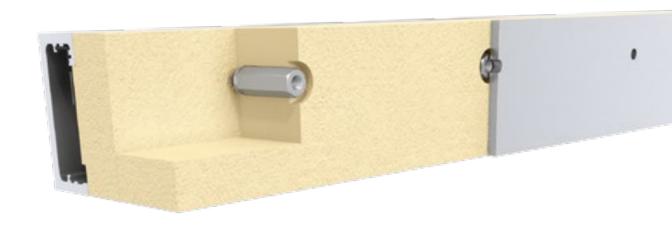
Edelstahl und aus einer Aluminium-Verblendung zum Fußboden bestehen sollte. Die Scheiben waren linienförmig ins
Tragprofil einzustellen. Der Handlauf sollte lastabtragend sein
und durchgehend als U-Profil auf die Glaselemente aufgesetzt
werden. Auszuführen war die Verglasung nach den Technischen Regeln für die Verwendung von absturzsichernden Verglasungen (TRAV) / Kategorie B mit geprüfter typenstatischer
Berechnung und allgemeinem bauaufsichtlichen Prüfzeugnis
(abP). Realisiert hat diesen Auftrag die MBN Bau Aktiengesellschaft in Georgsmarienhütte, die auch den Bau der Mall
und des Parkdecks übernommen hatte.

"Für uns von der Bau- bzw. Projektleitung kam dafür nur BALARDO *steel* von GLASSLINE als Rundum-sorglos-Paket in Frage", sagt Oliver Möllmann, stellvertretender Projektleiter der ARGE Döppersberg. Das Glasgeländersystem BALARDO *steel* wurde auf einer Gesamtlänge von 67 Metern verbaut.

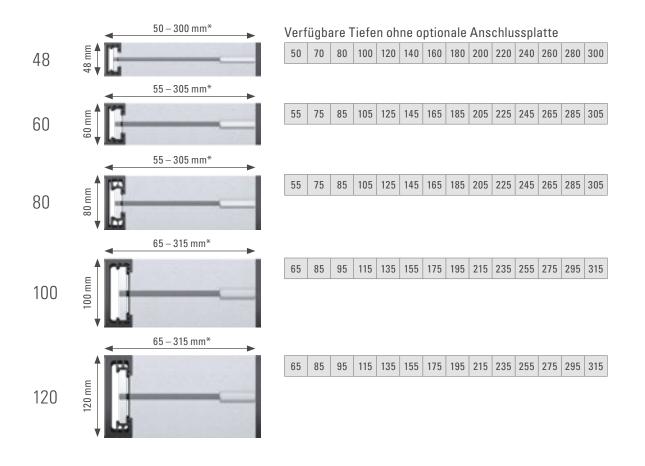


FIX'N SLIDE outside

DAS SYSTEM MIT THERMISCHER TRENNUNG ZUR SICHEREN BEFESTIGUNG VON ANBAUELEMENTEN AN GEBÄUDEHÜLLEN


FIX'N SLIDE

DAS SYSTEM MIT THERMISCHER TRENNUNG ZUR SICHEREN BEFESTIGUNG VON ANBAUELEMENTEN AN GEBÄUDEHÜLLEN


Das System ist modular aufgebaut und so flexibel wie es die Anwendung erfordert. Hauptkomponenten sind die anwendungsunabhängige Alu-Tragschiene zur Vormontage und Anbindung an die Unterkonstruktion, Einschubplatten aus Edelstahl mit zugfesten Gewindestangen und Gewindemuffen, druckfeste Dämmkörper und eine optionale Aluminium-Anschlussplatte.

- Schienen in festen Lagerlängen und individuellen Längen bis 3.000 mm
- 5 Systembreiten von 48 bis 120 mm
- Zur Befestigung der Schiene können die Löcher zusätzlich variabel gebohrt werden
- Dämmstärken von 50 bis 315 mm
- Einschubplatten mit zugfesten Gewindestäben können an die Befestigungspunkte der Anbauelemente durch Verschiebung angepasst werden
- Optionale Aluminium-Anputz-/Anschlussplatte (8 mm Stärke)
- Vorgebohrte Dämmkörper für die Aufnahme der Gewindestäbe und Gewindemuffen, zusätzliche Löcher können variabel gebohrt werden

FIX N SLIDE - LINEARE ANBINDUNG

Verfügbare Längen Weitere Größen au											uf Anfrage	
	600	800	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000

^{*}Tiefen ohne optionale Anschlussplatte t = 8 mm (Aluminium, Oberfläche E6/EV1)

BALARDO core / core hd

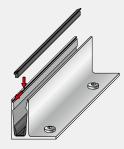
MONTAGEANLEITUNG

DIE CLICK'N FIX MONTAGE AM **BALARDO** core / core hd

Das CLICK*N FIX Montageset macht die Installation von Glasgeländern denkbar einfach:

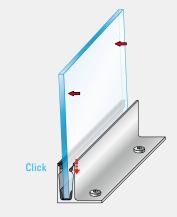
Setzen Sie das Glas ein und legen Sie den Klemmstab auf das Profil. Sobald Sie die Scheibe nach außen drücken, macht es "Click" und der Klemmstab fällt in seine Position und arretiert die Scheibe.

DAS CLICK'N FIX MONTAGESET

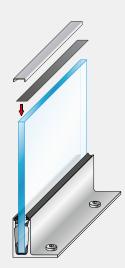

Montageanleitung CLICK'N FIX

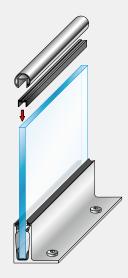
Befestigen Sie das Profil. Richten Sie es an der Unterkonstruktion und nicht am Profil aus. Die Profile sind vorverformt und erst nach Einsetzten von Glas und Klemmstab im Wasser.

2 Setzen Sie den Klemmschuh ein. Beim Side-Profil: Systemblende einklipsen!


3 Drücken Sie die Außendichtung fest.

4 Setzen Sie die Glasscheibe ein.


Legen Sie den Klemmstab ein und drücken Sie das Glas gegen die Außendichtung. (Abstand zwischen zwei Stäben max. 50 mm)

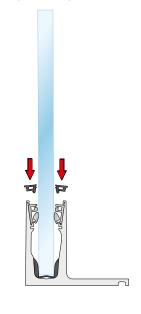

6 Drücken Sie, bis der Klemmstab mit einem hörbaren "Click" einrastet.

7 Setzen Sie die Innendichtung ein.

8 Montieren Sie das Glaskantenschutzprofil oder ...

9 ... montieren Sie den Handlauf. Fertig!

Ecken: Klemmstab max. 50 mm in das Eckprofil setzen


BALARDO hybrid

MONTAGEANLEITUNG

DIE CLEVERFIX MONTAGE AM **BALARDO** hybrid **BEIDSEITIG VERSTELLBAR**.

Die CLEVERFIX Montage lässt Sie zu jeder Zeit auf jeder Baustelle Ihre Scheibe von innen und außen ausrichten!

Egal ob nach innen oder außen. Sie können ganz einfach mit dem Akkuschrauber die Stiftschrauben einstellen, um die Scheibe durch das Stellelement zu bewegen und diese somit in die für Ihr Bauvorhaben richtige Lage zu bringen.

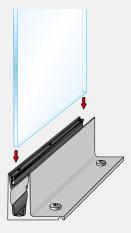
einstellbar

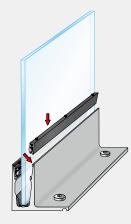
Montagevideo unter www.glassline.de/montage-balardo-hybrid

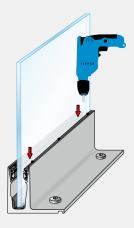


DAS CLEVERFIX MONTAGESET

Montageanleitung CLEVERFIX


Befestigen Sie das Profil. Richten Sie es an der Unterkonstruktion und nicht am Profil aus. Die Profile sind vorverformt und erst nach Einsetzten von Glas und Stellelement im Wasser.


2 Setzen Sie den Klemmschuh ein.


3 Klipsen Sie das äußere Stellelement ein.

4 Setzen Sie die Glasscheibe ein.

Klipsen Sie das innere Stellelement ein. (Abstand zwischen zwei Elementen max. 300 mm)

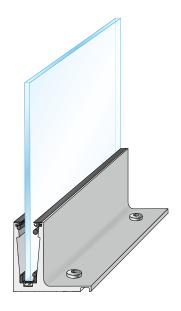
Fixieren Sie die Schrauben am Stellelement und bringen Sie die Scheibe ins Lot. Mittels Akkuschrauber können Sie die Stellschrauben an der Innen- und Außenseite leicht verstellen. Abstand der Schrauben: 200 mm.

7 Durch Eindrehen der Stiftschraube links drückt das Stellelement gegen die Scheibe und schiebt diese nach rechts.

8 Durch Eindrehen der Stiftschraube rechts drückt das Stellelement gegen die Scheibe und schiebt diese nach links.

9 Setzen Sie die Abschlussdichtungen ein.

Bitte verwenden Sie einen längeren Bit. Ecken: Schrauben aus Stellelement entfernen.

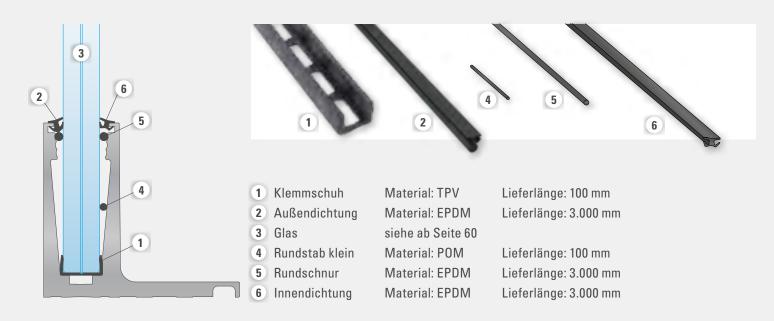

BALARDO smart

MONTAGEANLEITUNG

DIE EASYFIX MONTAGE AM **BALARDO** *smart*

Mit der EASYFIX Montage bringen Sie Ihr Glasgeländer nach Hause.

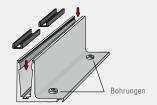
In einfachen Schritten können Sie Ihr Zuhause sicher machen.
Klemmschuh, Dichtung und Rundstäbe sind die einzigen Bestandteile,
die Sie dazu brauchen. Für ein zusätzliches Highlight in Ihrem Zuhause
können Sie das Glas mit einem LED-Band beleuchten.



Montagevideo unter www.glassline.de/montage-balardo-smart

EASYFIX MONTAGESET

BALARDO smart

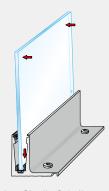

Montageanleitung EASYFIX

1 Befestigen Sie das Profil. Richten Sie es an der Unterkonstruktion und nicht am Profil aus. Die Profile sind vorverformt und erst nach Einsetzten von Glas und Klemmstab im Wasser.

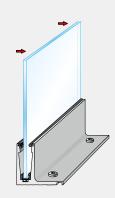
2 OPTIONAL: Legen Sie das LED-Band in die Profilnut

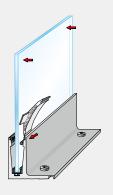
3 Setzen Sie die Klemmschuh-Stücke alle 250 mm (bei jeder Bohrung) ein.

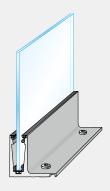
1 Drücken Sie die äußere Dichtung in die Nut.


5 Setzen Sie die Glasscheibe ein.


Bitte achten Sie darauf, dass die Glasscheibe im Klemmschuh sitzt.


7 Legen Sie alle 250 mm (bei jeder Bohrung) einen Klemmstab (je nach Scheibe) zwischen Profilkante und Scheibe.


8 Drücken Sie die Scheibe nach außen. Die Klemmstäbe rutschen nach unten.


9 Legen Sie eine durchgängige Rundschnur in die Profilnut.

Drücken Sie die Scheibe nach innen. Die Klemmstäbe fixieren die Scheibe.

11 Die Scheibe nach außen drücken und die Rundschnur mit dem Werkzeug in die dafür vorgesehenen Vertiefungen am Profil drücken bis die Scheibe gerade ausgerichtet ist.

12 Drücken Sie zum Schluss die Innendichtung ein.

BALARDO core

Name		Produktanfrage
Unternehmen		Bestellung
Straße/Hausnummer		
PLZ/Ort		Der schnelle Kontakt: Formular kopieren Ausfüllen
Telefon Telefax		Faxen an
E-Mail		+49 (0) 6291/6259-11
Bauvorhaben		oder per E-Mail an
Abweichende Lieferadresse:		info@glassline.de Ihre Anfrage / Bestellung wird
Straße/Hausnummer		schnellstmöglich bearbeitet.
PLZ/Ort		
		(Bitte alle Felder ausfüllen)
Anmerkungen		
SYSTEMPROFIL (bitte ankreuzen)		
Top 1 core Top 2 core Top 3 core To	op 4 core Side 1 core	Side 2 core
GLASSTÄRKE (bitte ankreuzen)		OBERFLÄCHE (bitte ankreuzen)
2 x 6 mm 2 x 8 mm 2 x 10 mm	Ab VSG 16	Natur unbehandelt Edelstahleffekt (E6EV1)
	BALARDO firstglass Glaskantenschutz	
GLASKANTENSCHUTZPROFILE (bitte ankreuzen)	LASTVERTEILENDE HA	NDLÄUFE (bitte ankreuzen)
Edelstahl Aluminium Höhe 6 mm Höhe 6 mm	Edelstahl-Handlauf Edelstahl-Han	
	☐ 1.4301 ☐ Ø 48,3 mm	
ZUBEHÖR (bitte eintragen)	_	
ECKEN ABSCHLUSSBLECHE Innenecke Ebene	VERBLENDUNG (Side 1) Blende	GLASABSTANDSHALTER Glasfuge 10 Glasfuge 20
Stück Stück Außenecke Treppe Stück Stück	Stück Profilkappen Stück	Stück Stück Glasfuge 15 Stück

BALARDO core hd

Name			Produktan	frage
Unternehmen			Bestellung	I
Straße/Hausnummer				
PLZ/Ort			Der schnelle Formular kopie	
Telefon	Telefax		- Ausfüllen - Faxen an	
E-Mail			+49 (0) 6291/	
Bauvorhaben			oder per E-Mai	
Abweichende Lieferadresse:			info@glassli Ihre Anfrage/B	
Straße/Hausnummer			schnellstmöglic	ch bearbeitet.
PLZ/Ort			_	
Anmarkungan			_ (Bitte alle Felder ausfüllen)	
Anmerkungen				
SYSTEMPROFIL (bitte ankreuze	en)			
				lfm
Top 1 core hd Top 2 core hd	Side 1 core hd			
GLASSTÄRKE (bitte ankreuzen)			OBERFLÄCHE	(bitte ankreuzen)
2 x 12 mm 2 x 15 mm	Ab VSG 16		Natur unbehandelt	Edelstahleffekt (E6EV1)
	BALARDO firstglass Glaskantenschutz			
GLASKANTENSCHUTZPI	ROFILE (bitte ankreuzen)	LASTVERTEILENDE H	ANDLÄUFE (bitte ankreuze)	n)
Glaskantenschutz- profil Höhe 6 mm		Edelstahl-Handlauf Edelstahl- U 40 x 37 mm Ø 60,3 mm	Handlauf Holz-Handlauf Ø 75 mm	Holz-Handlauf 75 / 55 mm
ZUBEHÖR (bitte eintragen)		1.4404		
	ABSCHLUSSBLECHE	VERBLENDUNG (Side 1 hd)	GLASABSTANDSHALTE	R
Innenecke	Ebene	Blende	Glasfuge 10	Glasfuge 20
Stück Außenecke Stück	Stück Treppe Stück	Stück Profilkappen Stück	Stück Glasfuge 15 Stück	Stück

BALARDO hybrid

Name					Produktanf	rage
Unternehmen					Bestellung	
Straße/Hausnummer					Dawashualla	V a sata lata
PLZ/Ort					Der schnelleFormular kopierAusfüllen	
Telefon		Telefax			■ Faxen an	
E-Mail					+49 (0) 6291/6	259-11
Bauvorhaben					oder per E-Mail	
Abweichende Lieferadres	sse:				info@glasslin	estellung wird
Straße/Hausnummer					schnellstmöglic	n bearbeitet.
PLZ/Ort						
Anmerkungen					(Bitte alle Felder ausfüllen)	
SYSTEMPROFIL	_ (bitte ankreuzen)					
						Ifm
Top 1 hybrid	Top 4 <i>hybrid</i>	Side 1 hybrid				
GLASSTÄRKE (b	itte ankreuzen)				OBERFLÄCHE	(bitte ankreuzen)
2 x 8 mm	2 x 10 mm	Ab VSG 16			Natur unbehandelt	Edelstahleffekt (E6EV1)
		ALARDO firstglass laskantenschutz				
GLASKANTENS	SCHUTZPROFILI	E (bitte ankreuzen)	LASTVERTEIL	ENDE HAND	LÄUFE (bitte ankreuzen)	
	Aluminium löhe 6 mm		Edelstahl-Handlauf U 30 x 27 mm 1.4301	Edelstahl-Handlau Ø 42,4 mm	uf Holz-Handlauf Ø 55 mm	Holz-Handlauf 50 / 40 mm
ZUBEHÖR (bitte ein	ntragen)		1.4404	Ø 48,3 mm		
ECKEN		SSBLECHE	VERBLENDUNG	i (Side 1)	GLASABSTANDSHALTER	
Innenecke Stück Außenecke	Sti	ene ick eppe	Blende Stück Profilkap	ppen	Glasfuge 10 Stück Glasfuge 15	Glasfuge 20 Stück

BALARDO smart

Name				Produktan	frage
Unternehmen				Bestellung	I
Straße/Hausnummer					
PLZ/Ort Telefon	Telefax			Der schnelleFormular kopieAusfüllen	
				■ Faxen an	
E-Mail				+49 (0) 6291/9 oder per E-Mai	
Bauvorhaben				info@glassli	
Abweichende Lieferadresse:				Ihre Anfrage/B	
Straße/Hausnummer				schnellstmöglic	ch bearbeitet.
PLZ/Ort					
Annadungan			(Bi	tte alle Felder ausfüllen)	
Anmerkungen					
SYSTEMPROFIL (bitte ankreuzen)					
					lfm
Top 1 smart Side 3 smart					·····
GLASSTÄRKE (bitte ankreuzen)				OBERFLÄCHE	: (bitte ankreuzen)
2 x 6 mm 2 x 8 mm	Ab VSG 16			Natur unbehandelt	Edelstahleffekt (E6EV1)
	BALARDO firstglass Glaskantenschutz				
GLASKANTENSCHUTZPROI	FILE (bitte ankreuzen)	LASTVERTEIL	ENDE HANDL	ÄUFE (bitte ankreuze	1)
Glaskantenschutz- profil Höhe 6 mm Höhe 6 mm		Edelstahl-Handlauf U 30 x 27 mm	Edelstahl-Handlauf Ø 42,4 mm	Holz-Handlauf Ø 55 mm	Holz-Handlauf 50 / 40 mm
ZUDEUÖD		1.4301 1.4404	Ø 48,3 mm		
ZUBEHÖR (bitte eintragen) ABSCHLUSSBLECHE	VERBLENDUNG (Side	3)	LASABSTANDSHALTE	R	
Ebene	Blende	J, U	Glasfuge 10	Glasfuge 20	
Stück Treppe Stück	Stück		Stück Glasfuge 15	Stück	

FIX'N SLIDE

Name Unternehmen					Produl Bestel	ktanfrage Ilung	•
Straße/Hausnummer							_
PLZ/Ort Telefon E-Mail Bauvorhaben Abweichende Lieferadresse: Straße/Hausnummer PLZ/Ort Anmerkungen	Telefax			(B	 Formular Ausfüllen Faxen an +49 (0) 6 oder per linfo@gl lhre Anfr 	5 291/6259- E-Mail an assline.de age/Bestellu möglich bear	11 ung wird
BLOCKHÖHEN X Y Sonderlängen auf Anfrage	Größen Y: 48 60 80 100 120	80 100 120 140 160	60 + 80 55 75 85 105 125 145 165	100 + 120 65 85 95 115 135 155 175	48 180 200 220 240 260 280 300	60 + 80 185 205 225 245 265 285 305	100 + 120 195 215 235 255 275 295 315
LINEARE ANBINDUNG		Längen Z : 600 m 800 m		2.000 mm			

1.200 mm

1.400 mm 1.600 mm

1.800 mm

2.400 mm

2.600 mm

2.800 mm

3.000 mm

Sonderlängen auf Anfrage

KUNDENSTIMMEN

"Wir arbeiten seit 2016 mit GLASSLINE zusammen und freuen uns über viele gemeinsame Projekte. Egal ob schöne Vordächer, transparente Geländer – die GLASSLINE-Produkte kommen bei unseren Kunden gut an. Wir verbauen die Produkte gern, weil sie durch Qualität überzeugen und einfach zu montieren sind. Gleichzeitig überzeugen sie uns auch durch ihre besondere Ästhetik."

Christian Driemel, Inhaber Glaswohnen.de

"Wir arbeiten bereits seit 2002 mit GLASSLINE zusammen. Zunächst haben wir die Punkthalter eingesetzt, jetzt verstärkt die Glasgeländer BALARDO und die Glasvordächer CANOPY von GLASSLINE. Die Produkte gefallen uns sehr gut. Sie sind zum einen sehr montagefreundlich. Zum anderen gefällt unseren Kunden die elegante und transparente Ästhetik. Deshalb setzen wir die GLASSLINE-Produkte auch gern ein. Wir arbeiten sehr langfristig mit unseren Partnern zusammen und bei GLASSLINE funktioniert das gut. Die Lieferperformance darf aus unserer Sicht teilweise noch optimiert werden. Aber ich bin sicher, das schaffen die GLASSLINER auch noch."

Eckart Menke, Gesellschafter Menke Glas GmbH

"Wir arbeiten jetzt seit 2012 kontinuierlich mit GLASSLINE zusammen. Für uns als Verarbeiter ist es einfach wichtig, dass die Systeme leicht zu verarbeiten sind. Hier bietet GLASSLINE mit CLICK*N FIX unschlagbare Montagevorteile. Die Montage ist leicht und schnell, und unsere Angestellten erhalten gute Montageanleitungen sowie Filme, wenn nötig. Das finde ich alles schnell auf der Website von GLASSLINE. Zudem beeindruckt mich besonders die tolle Ästhetik der Produkte. Sie sind so schnörkellos schön, die Geländer sehen wie schwebend aus."

Femcke Rickertsen, stellvertretende Geschäftsführerin Schlosserei Marten Rickertsen

RAINVILLE APPARTEMENTS HAMBURG

HÖCHSTER WOHNKOMFORT, LICHTDURCHFLUTETE RÄUME

Mit einer markanten Komposition aus Natursteinfassade und lichtdurchfluteten Räumen fügt sich das Gebäude mit seinen 23 Appartements in das architektonische Umfeld aus Gründerzeit und 1930er-Jahre an der Hamburger Elbchaussee. Dabei unterstützen die Ganzglasbrüstungen der Balkone und Loggien seine moderne Eigenständigkeit. BALARDO *core*

erfüllte als Systemlösung sowohl die Forderung nach höchster Transparenz, geprüfter Sicherheit und schneller Montage durch das CLICK®N FIX-System. Sein zeitnaher Einsatz ohne bürokratischen Aufwand ermöglichte ein enges Zeitfenster bei der Fertigstellung.

otn: Werner Hurhmacher

ERSTE CAMPUS WIEN

GERADE UND GESCHWUNGENE FORMEN KOMBINIERT

Das Bebauungskonzept des Headquarters des Erste Campus Wien basiert auf freischwingenden Volumen. Das Ensemble aus geschwungenen Baukörpern wird im Außenbereich durch Brücken verbunden, die die motivierende, geschwungene Glasarchitektur aufnehmen und weiterführen.

Absturzsichernde, gebogene Glasgeländer sollten die dynamischen Formen und die offene Gebäudestruktur hochtransparent und dezent begleiten. Für geschwungenen und geraden Formen erwies sich die Kombination aus BALARDO steel (gerade) und BALARDO wave (gebogen) als perfekte Lösung für die hohen Ansprüche.

GL/-SS///7E

GLASSLINE GmbH

www.glassline.de

Industriestraße 7-8 74740 Adelsheim Telefon +49 (0) 6291 6259-0 Fax +49 (0) 6291 6259-11 info@glassline.de

SYSTEMLÖSUNGEN FÜR DIE ANSPRUCHSVOLLE RAHMENLOSE GLASARCHITEKTUR SOWIE DIE SICHERE BEFESTIGUNG VON ANBAUTEILEN AN WDVS

Als führender Anbieter entwickelt, fertigt und vertreibt GLASSLINE hochwertige Systemlösungen in den Bereichen Punkthaltesysteme, Glasgeländeranlagen, rahmenlose Vordachkonstruktionen und Systeme mit thermischer Trennung zur sicheren Befestigung von Anbauelementen an Gebäudehüllen.

Copyright 2020 by GLASSLINE GmbH · Auflage Oktober 2020 · Technische Änderungen vorbehalten. Wir übernehmen keine Haftung für Druckfehler und Irrtümer.

- Alle Zeichnungen sind Beispielanwendungen. Die Firma GLASSLINE übernimmt keine Garantie oder Haftung für eine übertragbare Anwendung Technische und konstruktive Änderungen sind vorbehalten. Alle Schraubverbindungen sind dauerhaft, z.B. mittels Verklebung, gegen Lösen zu sichern. Die druckfesten Dämmkörper sind gegen UV-Strahlung und Witterungseinflüsse zu schützen.

- Die objektspezifische Anwendung sowie die Nachweise zur Lastein- und -weiterleitung sind bauseits zu überprüfen bzw. zu führen.

